Defining, Calculating, and Converging Observables of a Kinetic Transition Network

Thomas D. Swinburne* and David J. Wales

ABSTRACT: Kinetic transition networks (KTNs) of local minima and transition states are able to capture the dynamics of numerous systems in chemistry, biology, and materials science. However, extracting observables is numerically challenging for large networks and generally will be sensitive to additional computational discovery. To have any measure of convergence for observables, these sensitivities must be regularly calculated. We present a matrix formulation of the discrete path sampling framework for KTNs, deriving expressions for branching probabilities, transition rates, and waiting times. Using the concept of the quasi-stationary distribution, a clear hierarchy of expressions for network observables is established, from exact results to steady-state approximations. We use these results in combination with the graph transformation method to derive the sensitivity, with respect to perturbations of the known KTN, giving explicit terms for the pairwise sensitivity and discussing the pathwise sensitivity. These results provide guidelines for converging the network, with respect to additional sampling, focusing on the estimates obtained for the overall rate coefficients between product and reactant states. We demonstrate this procedure for transitions in the double-funnel landscape of the 38-atom Lennard-Jones cluster.

1. INTRODUCTION

The dynamics of a condensed-phase system can often be represented as transitions between local minima in the potential energy landscape. When local minima are sufficiently deep that the system thermalizes before escape, interminima transitions are Markovian,1 permitting a linear master equation representation of the dynamics. Transition rates \(k = \kappa \omega \exp\left(-\beta \Delta F\right) \) are decomposed to a dynamical prefactor \(\kappa \omega \) and a free-energy barrier \(\Delta F = F_j^\ast - F_i \) between a given local minimum \(i \) and the local free-energy maximum on the \(j \rightarrow i \) minimum free-energy path, known as the transition state.\(^2\)

The simplest transition-state theory assumes that trajectories that pass the transition state do not recross and free energies can be calculated in the harmonic approximation. The set of all minima and transition states, characterized by their free energies, form a kinetic transition network (KTN).\(^3\)\(^-\)\(^8\)

As the escape time from a minimum \(i \) scales as \(\exp(\beta(\min, F_j^\ast - F_i)) \), construction and analysis of a KTN can, in principle, be much more efficient than direct molecular dynamics simulation. In practice, the number of local minima is exponential in system size,\(^9\)\(^-\)\(^10\) meaning that it may be computationally challenging to sample the thermodynamically important minima and numerically challenging to reliably extract observables from the landscape.\(^11\)

The variety of strategies to build KTNs can be considered a subclass of rare event simulation techniques that focus on identifying transition states. Starting with some set of minima produced from experimental insight or global optimization,\(^12\)\(^-\)\(^14\) we can search for transition pathways from each minimum, using single-ended methods, or seek connections between two minima, using double-ended methods.

For the purposes of KTN construction, double-ended searches are typically static methods that find pathways by minimizing a continuous or discrete chain of configurations connecting two specified states. Popular approaches include the string,\(^15\) nudged elastic band (NEB),\(^16\)\(^-\)\(^17\) and doubly nudged elastic band (DNEB)\(^18\)\(^,\)\(^19\) methods. The DNEB approach has been extended to treat distant initial and final states, where many intermediate minima may be involved, resulting in pathways including multiple transition states. Here, we employ a missing connection algorithm,\(^20\) along with hybrid eigenvector-following to refine the transition states accurately.\(^21\)\(^-\)\(^24\) There are also dynamical double-ended methods, such as milestones,\(^25\) transition-path sampling,\(^26\)\(^-\)\(^27\) and forward flux sampling,\(^28\) among others.\(^29\)

Single-ended search methods can be roughly classified into unbiased dynamical approaches, such as temperature-accelerated dynamics,\(^31\)\(^-\)\(^33\) and parallel replica dynamics with state

Received: December 5, 2019
Published: March 10, 2020

https://dx.doi.org/10.1021/acs.jctc.9b01211
II. KINETIC TRANSITION NETWORKS

A KTN is constructed from a set of metastable states and the transition states or rates that connect them. The states are considered sufficiently metastable that local equilibrium is achieved before escape and thus the state-to-state dynamics are Markovian, providing the master equation representation that is used as the starting point for DPS. In this section, we define our notation and introduce the master equation in terms of large, typically sparse matrix products.

Consider a tripartition of the set of all minima \(S = \mathcal{A} \cup \mathcal{B} \cup \mathcal{I} \) into two (possibly directly connected) regions \(\mathcal{A}, \mathcal{B} \) containing \(N_{\mathcal{A}}, N_{\mathcal{B}} \) minima, respectively, and an intervening region \(\mathcal{I} \) containing \(N_{\mathcal{I}} \) minima. We assume that \(\mathcal{A} \) and \(\mathcal{B} \) are metastable, a statement which will be made precise when considering KTN observables. Without a loss of generality, we focus on transitions from \(\mathcal{B} \) to \(\mathcal{A} \), which we denote as \(\mathcal{A} \leftarrow \mathcal{B} \). Let \(I_X \) be the identity matrix in \(\mathbb{R}^{N_x \times N_x} \), i.e., of dimension equal to the number of minima in region \(\mathcal{X} \), and \(I_X \in \mathbb{R}^{N_x} \) a row vector of ones of the same dimension. Before reaching equilibrium, the probability density vector \(P_X \in \mathbb{R}^{N_x} \) in a region \(\mathcal{X} \in \{\mathcal{A}, \mathcal{B}, \mathcal{I}\} \) evolves according to the master equation

\[
P_X = -D_X P_X + \sum_{y \in \{A,B,I\}} K_{X,y} P_Y
\]

(1)

where \(K_{X,y} \in \mathbb{R}^{N_x \times N_y} \) is a (rectangular) matrix of all of the minimum-to-minimum rates \(Y \rightarrow X \), and \(D_X \in \mathbb{R}^{N_x \times N_x} \) is a
diagonal matrix whose entries are the total escape rate from each state in X. The conservation of probability requires $\sum_{i \in \{A,B,I\}} I_X^i P_X = 0$, for any probability density, which, in turn, implies that

$$I_X D_X = \sum_{y \in \{A,B,I\}} I_y K_{yX}$$

(2)

Assuming that a detailed balance holds, the probability distribution P_X will relax exponentially to the equilibrium occupation probabilities π_X for all the component minima. It is useful to define the normalized restricted equilibrium distributions $\tilde{\pi}_X = \pi_X / I_X^i \pi_X$, such that $I_X \tilde{\pi}_X = 1$. Hence, a component, such as $\tilde{\pi}_X$, is the equilibrium conditional probability that the system is associated with local minimum b, given that we are in region B. These conditional probabilities appear in all of the rate constant formulations previously derived in the DPS framework, as discussed below.

We now introduce the branching probability B ($B_j = P(j \to i)\) that the next step of a Markov jump process will be $j \to i$. The branching probability plays a key role in DPS and kinetic Monte Carlo simulations. In terms of the transition rates defined above, branching probability matrices are given by $B_{XY} \equiv K_{XY} D_X^2$. Because of the (assumed) Markovivity of the state-to-state dynamics, just as B_{XX} gives the probability of reaching $i \in X$ from $j \in X$ in one jump, the sum

$$\sum_l [B_{XX}]_{ij} = [B_{XX}]_{ij}$$

(3)

gives the probability of reaching i from j in exactly two jumps within X. More generally, we consider the sum of all possible path probabilities, conditional on not leaving X. Making the eigendecomposition $B_{XX} = \sum_l \lambda_l v_l^r \otimes v_l^l$, it is straightforward to show the total probability of all $X \to X$ paths (with recrossings), which reads

$$G_X \equiv \sum_{n=0}^{\infty} B_{XX}^n = \sum_l v_l^r \otimes v_l^l / (1 - \lambda_l) = [I_X - B_{XX}]^{-1}$$

(4)

where we define the matrix G_X to simplify later expressions and \otimes is the diadic (outer) product; for two vectors a and b, the outer product is the matrix $a \otimes b$ with elements $[a \otimes b]_{ij} = a_i b_j$. This inversion is nonsingular ($\lambda_l < 1$) when escape from X is possible.

The Green’s matrices (eq 4) are very useful when deriving KTN observables for transitions between A and B; in particular, the Green’s matrix G_I^I provides a compact manner to write the branching probability B_{XY} of leaving $Y \in \{A,B\}$ in one jump, executing a path of arbitrary (possibly zero) length within I and ending in $X \in \{A,B\}$. This result reads

$$B_{XY} \equiv B_{XY} + B_{XY} G_I B_{XY}$$

(5)

where B_{XY} allows for the possibility of a direct $X \to Y$ jump, bypassing I. As in previous work, we distinguish quantities that implicitly account for intervening minima by the superscript I, which immediately defines another key quantity in DPS, the committor vector:

$$C_B^I = I_B B_{AB} \in \mathbb{R}^{N_B}$$

(6)

with component $[C_B^I]_b = C_b^I$ being the probability of leaving state $b \in B$ in the first jump, then reaching A before B.

The compound branching probabilities B_{AB}^I and B_{BB}^I will play a central role when deriving the main KTN observables in this work. Indeed, the total committor probability, $I_B C_B^I$, will be the objective function for our convergence analysis. However, we will see, in later sections, that evaluation of the Green’s matrices G_A routinely suffer from severe conditioning issues, because of the exponential sensitivity of transition rates, meaning that direct solution is numerically unstable. To overcome these issues, we use the graph transformation (GT) method, detailed in the next section.

III. THE GRAPH TRANSFORMATION METHOD

The graph transformation (GT) method, is a deterministic technique to remove a state $l \in S$, giving a new state space $S'\setminus l$ with renormalized branching probabilities and escape times. If the current branching probability matrix is B_{S}, where, by definition, $\sum_l [B_{Sl}]_l = 1$ for all $l \in S$, the GT procedure to remove a state l to give S' is

$$[B_{Sl}]_l \to [B_{S'l}]_l = [B_{Sl}]_l + [B_{Sl}]_l [B_{Sl}]_l / 1 - [B_{Sl}]_l$$

$$[D_{Sl}]_l \to [D_{S'l}]_l = [D_{Sl}]_l + [D_{Sl}]_l [D_{Sl}]_l / 1 - [B_{Sl}]_l$$

(7)

While self-transitions $l \to l$ are initially zero (i.e., we start with $[B_{Sl}]_l = 0$), such “self-transition” terms emerge after repeated application of the GT renormalization, representing the branching probability to paths solely on removed states that start and end on a state l. Including degenerate rearrangements rescales the initial branching probabilities and waiting times, leaving the ratios unchanged. The original GT procedure excluded self-transitions from the possible events. The branching probabilities and waiting times then scale by a common factor, and the expected waiting time for escape is unaffected. However, when self-transitions are included in the events, we obtain a direct connection to committor probabilities.

The GT method was specifically designed as an alternative to matrix representations of Markov chain observables to overcome the numerical conditioning issues described above. In particular, when $[B_{Sl}]_l$ becomes very close to unity, evaluation of the denominator $1 - [B_{Sl}]_l$ induces floating point error. The GT method overcomes this problem by exploiting a state-by-state removal scheme, replacing $1 - [B_{Sl}]_l$ with the equivalent term $\sum_{i \neq l} [B_{Sl}]_l$, which does not suffer from these issues. The GT approach has indeed been shown to have far superior numerical stability to direct linear algebra solutions across a wide range of systems, and has been exploited to overcome trapping in kinetic Monte Carlo simulations.

A matrix generalization of the GT method has recently been analyzed, where blocks of states are removed simultaneously instead of individually. In fact, the renormalization procedure can preserve branching probabilities and waiting times for the removal of any subsets of states in any sequence. Specifically, suppose that we start with states $I \cup Z$ and wish to remove all states belonging to I. Equation 5 gives the sum of the products of branching probabilities for all paths starting at z_i.
ending at z_j, with $z_j, z_1 \in \mathcal{Z}$ and any number of steps in the I region between the end points:

$$[B^I_{zz}]_{z_1z_j} \equiv [B^I_{zz} + B^I_{z} G^I_{zz} B^I_{zz}]_{z_1z_j}$$ \hspace{1cm} (8)

Therefore, we can conserve the probability associated with these paths using the renormalized branching probability matrix B^I_{zz} with the elements defined above in $\mathbb{R}^{N \times N}$.

The expected waiting time for a single-step transition between z_1 and z_2 can be obtained by summing the waiting time $[D^I_{zz}]_{zz}$ or $[D^I_{z}]_{ii}$ for each state $z \in \mathcal{Z}$ or $i \in I$ along a given path, then performing a weighted average over all paths using the product of branching probabilities. Here, we are assuming Markovian transitions within the KTN, so that the expected time to traverse each path is simply the sum of the expected escape times for each state. To achieve this averaging, we define $B^I_{X,Y}$ as follows:5,6,11,12

$$\tilde{B}^{I}_{X,Y} \equiv B^{I}_{X,Y} \exp(\zeta D^{I}_{zz})$$, \hspace{1cm} (9)

where $X, Y \in \{I, \mathcal{Z}\}$, which weights each step by the correct waiting time when taking a derivative with respect to ζ and then setting $\zeta = 0$. Since branching probabilities must sum to one over all possible connections, we have $I_i = 1_I - B^I_{I} + B^I_{I}$, so that $1_I B^I_{zz} = I_i (1_i - B^I_{I})$ and hence $I_i = 1_I B^I_{zz} G^I_{zz}$. In Appendix A, we provide a summary of other useful relations between these quantities.

We can use these identities to simplify the expression for the expected waiting time for a transition from any state $z \in \mathcal{Z}$ to any another state in \mathcal{Z} via an arbitrary number of steps between states in I. This waiting time becomes the expected escape time from z when the I states are renormalized away and is given by the z-component of

$$1_I [D^I_{zz}]^{-1} \equiv 1_I \frac{d}{d\zeta} (\tilde{B}^{I}_{zz})|_{\zeta=0}$$

$$= 1_I \frac{d}{d\zeta} (B^{I}_{zz} + \tilde{B}^{I}_{zz} G^I_{zz} B^I_{zz})|_{\zeta=0}$$

$$= 1_I D^{I}_{zz} + I_i D^{I}_{z} G^I_{zz} B^I_{zz}$$ \hspace{1cm} (10)

(see Appendix B for a full derivation), which defines the renormalized waiting times $1_I [D^I_{zz}]^{-1}$. We note that $1_I B^I_{zz} = 1_I$, so the sum of path weights in question for any component of \mathcal{Z} is unity. Hence, the expected waiting times associated with direct transitions between \mathcal{Z} states when the I states are removed are conserved if we replace the original values by the diagonal elements of $[D^I_{zz}]^{-1}$. The renormalization conserves the path probabilities as branching ratios between all \mathcal{Z} states exactly, but not individual first passage times. As for the previous derivation of state-by-state renormalization, the sum over end points in \mathcal{Z} conserves the escape time.

The renormalization only changes values for \mathcal{Z} states that are first or second neighbors of I states, but the formulas can be applied for all \mathcal{Z}. We will also obtain the same results if we remove sets of states in any order, so long as the final state space is the same. In particular, we recover the results in eq 7 if we remove a single state. Furthermore, we can partition \mathcal{Z} arbitrarily, for example, into product and reactant portions, which we indicate by $\mathcal{Z} = \mathcal{A} \cup \mathcal{B}$. We then obtain renormalized branching probabilities and escape times:

$$[B^I_{\mathcal{A}/\mathcal{A}}, B^I_{\mathcal{A}/\mathcal{B}}, B^I_{\mathcal{B}/\mathcal{A}}, B^I_{\mathcal{B}/\mathcal{B}}]$$

$$\rightarrow B^I_{\mathcal{A}/\mathcal{A}}, B^I_{\mathcal{A}/\mathcal{B}}, B^I_{\mathcal{B}/\mathcal{A}}, B^I_{\mathcal{B}/\mathcal{B}}$$

$$[1_I [D^I_{\mathcal{A}}]^{-1}], [1_I [D^I_{\mathcal{B}}]^{-1}] \rightarrow [1_I [D^I_{\mathcal{A}}]^{-1}], [1_I [D^I_{\mathcal{B}}]^{-1}]$$ \hspace{1cm} (11)

The components of $1_I [D^I_{\mathcal{A}}]^{-1}$ correspond to the renormalized escape times τ^I in previous work;5 we will use them again in section IV(D).

As we shall see, the flexibility to remove blocks of states and conserve the branching probabilities and waiting times of interest is useful for analysis but suffers from the same numerical issues as those that the state-by-state GT method overcomes.

In the next section, we derive some formally exact results from the full Markov chain (eq 1), then show how these may be generalized to produce expressions for the waiting time and branching probabilities found in previous work. The extended GT results described above will then be used to study how reaction rates emerge in a KTN. We note here that the renormalization procedure conserves the escape time for a transition within the remaining state space, while approximations involving steady-state assumptions for I states do not. Nevertheless, the steady-state approximation can be useful for analysis: it has been exploited in DPS,49,50 and the same formulas result from a coarse-graining approach.51

IV. EXACT OBSERVABLES FOR A KTN

When \mathcal{A} and \mathcal{B} are metastable, $\mathcal{A} \leftrightarrow \mathcal{B}$ transitions will be rare and typically followed by long periods in the product region. Therefore, it is meaningful to ask for the expected waiting time to reach, say, \mathcal{A}, given that we prepare the initial distribution in \mathcal{B}, i.e., $P_0(0) = 0$, and $P_0(0) = 0_\mathcal{A}$.

The $\mathcal{A} \leftrightarrow \mathcal{B}$ waiting time can be evaluated exactly by studying an artificial system where all transitions out of \mathcal{A} are set to zero, i.e., $K_{\mathcal{A}/\mathcal{B}} = 0$. While this system then clearly violates detailed balance (as all trajectories will eventually end in \mathcal{A} for a connected network), the dynamics before reaching \mathcal{A} are unperturbed. In this limit, the dynamics in $I \cup \mathcal{B}$ follow a master equation analogous to eq 1:

$$[P_i] = \begin{bmatrix} K_{II} - D_I & K_{IS} \\
K_{BS} & K_{SS} - D_S \end{bmatrix} [P_i]$$

$$[P_B] = \begin{bmatrix} 0 & \end{bmatrix}$$ \hspace{1cm} (12)

where all quantities are exactly as defined in eq 1, meaning that transitions to \mathcal{A} are encoded only in the diagonal matrices D_I and D_S. With no further approximations, it is possible to evaluate the expected waiting time to reach \mathcal{A} conditional on starting in \mathcal{B} analytically, i.e., with initial conditions $P(B)(0)$ such that $1_B P_B(0) = 0$, $1_B P_B(0) = 0$, and $1_B P_B(0) = 1$. The probability density for the waiting time τ is simply the probability flux out of $I \cup \mathcal{B}$:

$$P(\tau \in [t, t+dt]) = - (1_I P_I + 1_B P_B) dt$$ \hspace{1cm} (13)
The integral of this density is the total change of probability in \(I \cup B \) in the limit \(t \to \infty \), which is clearly unity. Therefore, we can express the expected waiting time as\(^3\)

\[
\langle r_{\mathcal{A} \to B}^* \rangle \equiv \int_0^\infty P(t \in [t, t + \delta t]) - \int_0^t P(t \in [t, t + \delta t]) \, dt \approx \left[\mathbf{I}_B \right]^{T} \left[\begin{array}{c} D_I - K_{FI} - K_{BS} \\ -K_{BS} \end{array} \right]^{-1} \mathbf{0}_I \left[\begin{array}{c} 1_B \\ 1_B \end{array} \right]
\]

(14)

where the second line arrives by considering the evolution equation described by eq 12. We derive this result in Appendix C, verifying that the denominator of the first line above is \(-1\), and then solve the matrix inversion analytically to give

\[
\langle r_{\mathcal{A} \to B}^* \rangle = \left(\mathbf{I}_B \right)^T \left[\begin{array}{c} D_I - K_{FI} - K_{BS} \\ -K_{BS} \end{array} \right]^{-1} \left[\begin{array}{c} 1_B \\ 1_B \end{array} \right] P_B(0)
\]

(15)

where the Green’s matrix \(\mathbf{G}_B^f \) is defined as

\[
\mathbf{G}_B^f = \left[\mathbf{I}_B - \mathbf{B}_{BSB}^T \right]^{-1}
\]

(16)

i.e., the Green’s matrix corresponding to the compound branching probability of all possible nonreactive paths starting and ending in \(B \) without reaching \(\mathcal{A} \). The matrix \(\mathbf{B}_{BSB}^T \) corresponds to the definition given in eq 5 and motivates the notation employed for \(\mathbf{G}_B^f \).

IV(A). Exact Waiting Time from Pathwise Averages. To make a connection with previous work on KTN observables, we wish to interpret the matrix expression defined by eq 15 in terms of weighted averages over all possible paths connecting \(\mathcal{B} \) to \(\mathcal{A} \). These path weights form the starting point for all of the mean first passage time and rate constant derivations in DPS theory, based on the graph transformation renormalization approach.\(^{53,54}\) In particular, we previously wrote the product of branching probabilities for any discrete path \(\xi \) as \(\mathcal{W}_\xi \). Element \(b \) of the vector \(\mathbf{1}_B^T \mathbf{B}_{BRB} \mathbf{G}_B^f \) is then identified with the sum of path weights \(\mathcal{W}_\xi \) over \(a \in \mathcal{A} \) and paths \(\xi \in a \to b \). Since \(\mathbf{G}_B^f \) gives the sum of all probabilities for paths starting at \(b \) in \(B \) and ending in \(b' \in B \) without reaching \(\mathcal{A} \), and \(\mathbf{B}_{BRB}^T \) is the probability of reaching \(a \in \mathcal{A} \) from \(b' \) summed over all paths that do not return to \(B \), the product is the sum of probabilities over all possible \(a \to b \) paths. Every element of this vector is unity: by conservation of probability, \(\mathbf{1}_B^T \mathbf{B}_{BRB} \mathbf{G}_B^f = \mathbf{1}_B^T \mathbf{B}_{BRB} \mathbf{G}_B^f = \mathbf{1}_B \), giving

\[
\mathbf{1}_B^T \mathbf{B}_{BRB} \mathbf{G}_B^f = \mathbf{1}_B \mathbf{G}_B^f = \mathbf{1}_B [\mathbf{G}_B^f]^{-1} \mathbf{G}_B^f = \mathbf{1}_B
\]

(17)

which, in turn, implies that \(\mathbf{C}_B^A \mathbf{G}_B^f P_B(0) = 1 \) for any initial condition. To obtain the expected waiting time, we follow the procedure of section III, and, in Appendix D, we show that the exact waiting time can be written as

\[
\langle r_{\mathcal{A} \to B}^* \rangle = \frac{\partial}{\partial \xi} \left(\mathbf{1}_B^T \mathbf{B}_{BRB} \mathbf{G}_B^f \right)_{\xi=0} P_B(0) = \mathbf{1}_B [\mathbf{D}_B^I]^{-1} \mathbf{G}_B^f P_B(0)
\]

(18)

which connects the expected waiting time to the sums of path weights. Here, we identify the components \(\mathbf{B}_{BRB} \mathbf{G}_B^f \mathbf{P}_B(0) \) with the waiting times \(\tau_{\mathcal{B}_B} \) in previous work.\(^8\)

IV(B). Exact Waiting Time Using the GT Method. The exact waiting time (see eq 15) can also be obtained using the graph-transformed branching probabilities (eq 11) and escape times section III, with \(\mathbf{K}_{\mathcal{A} \to \mathcal{A}} = \mathbf{0} \), to form a reduced Markov chain executing dynamics in a state space \(\mathcal{B}^I \) the same size as \(\mathcal{B} \), which subsumes excursions into \(I \) before eventual absorption in \(\mathcal{A} \). The \(I \) superscript indicates that all the \(I \) minima have been renormalized away, as described above.

The transition rate matrix between renormalized states in \(i, j \in \mathcal{B}^I \) is given by \(\mathbf{K}_{\mathcal{B}^I}^I = \mathbf{B}_{\mathcal{B}^I}^I \mathbf{D}_{\mathcal{B}^I} \), i.e., the branching probability multiplied by the total escape rate. The absorbing master equation (eq 12) in \(I \cup B \) is then transformed to a renormalized master equation in \(B^I \) evolving via \(\mathbf{K}_{\mathcal{B}^I}^I - \mathbf{D}_{\mathcal{B}^I} \), using the definition of \(\mathbf{G}_{\mathcal{B}^I}^I \) in eq 16, the evolution equation for \(\mathbf{P}_{\mathcal{B}^I}(t) \) becomes

\[
\mathbf{P}_{\mathcal{B}^I}(t) = -[\mathbf{G}_{\mathcal{B}^I}^I]^{-1} \mathbf{D}_{\mathcal{B}^I} \mathbf{P}_{\mathcal{B}^I}(t)
\]

(19)

Employing the same procedure as employed to derive the exact waiting time (eq 14 in Appendix C), we can write the exact waiting time of eq 19 as

\[
\langle r_{\mathcal{A} \to B}^* \rangle = \mathbf{1}_B [\mathbf{D}_B^I]^{-1} \mathbf{G}_{\mathcal{B}^I}^I \mathbf{P}_{\mathcal{B}^I}(0)
\]

(20)

which is identical to the exact result of eq 15 for the full system when \(\mathbf{P}_{\mathcal{B}^I}(0) = \mathbf{P}_B(0) \), which is consistent with the definitions in eq 11 and section III). The required initial condition in \(\mathcal{B}^I \) to reproduce the exact waiting time when \(\mathbf{P}_B(0) \neq \mathbf{0} \) is given in Appendix E. The notation \(\mathcal{B}^I \) for the probabilities is used to emphasize that, although eq 19 has exact escape statistics to \(\mathcal{A} \), the GT procedure changes the nature of the remaining state space. The exact waiting time of the full (or reduced) model is the expected time spent in \(I \cup \mathcal{B} \) (or \(\mathcal{B}^I \)) before reaching \(\mathcal{A} \), which is clearly not equal to the expected time spent in \(B \). Therefore, the state space \(\mathcal{B}^I \) has the same rank as \(\mathcal{B} \), but evolves with branching probabilities and escape times that account for all possible sojourns into \(I \). This distinction is important when defining the metastability of \(\mathcal{B} \) and transition rates \(k_{\mathcal{A} \to \mathcal{B}} \), as we see in the next section.

IV(C). Defining an Exact Transition Rate. The matrix formalism allows us to define exact expressions for the expected waiting time and branching probabilities for any initial condition and energy landscape; the metastability of \(\mathcal{A} \) and \(\mathcal{B} \) determine the utility, not the accuracy, of eqs 5 and 15. However, the existence of a constant reaction rate \(k_{\mathcal{A} \to B} \) on a suitable observation time scale is more subtle, because it is only well-defined (i.e., has a constant value) when the decay into \(\mathcal{A} \) follows single exponential kinetics. A weak condition for such kinetics is metastability in \(I \cup \mathcal{B} \); a stronger condition is metastability in \(B \) alone.

In this section, we first derive the conditions for an exact transition rate, dependent on metastability in \(I \cup \mathcal{B} \), before determining how this relates to previous work.

When \(I \cup \mathcal{B} \) is metastable, the rate matrix in eq 12 will have a spectral gap. More precisely, if we write the eigendecomposition of the rate matrix as
single exponential decay from $I \cup B$ will emerge if the
ordered eigenvalues, numbering from zero, satisfy $0 < \nu_0 < \nu_1 < \nu_2^{\ddagger}$, i.e., have a simple spectral gap $\nu_0 \ll \nu_1$. To verify this
limit, we solve for the probability distribution in the eigenbasis.
Writing $P_{I \cup B}(t) \equiv [P_I(t), P_B(t)]$, we find the multieponential solution
\begin{equation}
\frac{d}{dt} P_{I \cup B}(t) = \mathbf{M} P_{I \cup B}(t)
\end{equation}
which will decay to a projection along the slowest eigenmode w_0^g on a time scale $(\nu_1 - \nu_0)^{-1}$. Therefore, the limiting distribution in $I \cup B$, conditional on not being absorbed, is
\begin{equation}
\lim_{t \to \infty} \frac{P_{I \cup B}(t)}{P_{I \cup B}(0)} = w_0^g
\end{equation}
where the superscript "QSD" signifies that we have defined the quasi-stationary distribution $\pi^{\text{QSD}}_{I \cup B} = w_0^g$ for $I \cup B$. The QSD is defined as the limiting distribution in a region with absorbing boundaries conditional on not being absorbed, which is a natural and useful generalization of the local equilibrium distribution for metastable states.\(^{1,3}\) Importantly, if prepared in the QSD, basin escape statistics are single exponential, as we demonstrate below. For any eigenspectrum, i.e., any degree of metastability, any initial conditions will decay to the QSD on a time scale $(\nu_1 - \nu_0)^{-1}$. The spectral gap condition means that the escape time scale for the slowest mode, ν_0^{\ddagger}, is much longer than the time required to establish the relative probabilities corresponding to the QSD, namely, $(\nu_1 - \nu_0)^{-1}$. When we have simple metastability, $\nu_0 \ll \nu_1$, KTN observables approach single exponential kinetics on this time scale, giving an exact escape rate of
\begin{equation}
\frac{d}{dt} P_{I \cup B}(t) = w_0^g
\end{equation}
\begin{equation}
\tau_{\nu_0} = \left(\frac{1}{\nu_0} \right)^{-1}
\end{equation}
\begin{equation}
\lim_{t \to \infty} \frac{P_{I \cup B}(t)}{P_{I \cup B}(0)} = \nu_0 \equiv k^*_{\nu_0}
\end{equation}
The exact waiting time (eq 15) retains dependence on the initial conditions $P_{I \cup B}(0)$. Using the eigendecomposition described in eq 21, we can rewrite the formula for $(\tau^*_{\nu_0})$ involving the inverse matrix obtained in Appendix C as
\begin{equation}
(\tau^*_{\nu_0}) = I_{I \cup B} \sum_i \nu_1^{-1} w_i^g (w_i^g P_{I \cup B}(0))
\end{equation}
Note that the eigenvalues of the rate matrix \mathbf{M} in eq 21 are ≤ 0, and the minus sign is chosen so that $\nu_1 \geq 0$. This sign cancels the minus sign in the first line of eq CS in Appendix C to give eq 25. When $\nu_0 \ll \nu_1$, the first term dominates and we can use eq 23 to replace $I_{I \cup B} w_0^g$
\begin{equation}
(\tau^*_{\nu_0}) = \nu_0^{-1} (w_0^g P_{I \cup B}(0)) (I_{I \cup B} w_0^g) + O(\nu_0/\nu_1)
\end{equation}
\begin{equation}
= \frac{1}{k^*_{\nu_0}} + O(\nu_0/\nu_1)
\end{equation}
which is the inverse rate multiplied by the ratio of projections onto the slowest mode for the initial distribution and the QSD. Hence, $(\tau^*_{\nu_0}) = 1/k^*_{\nu_0} \equiv (\tau^*_{\nu_0}) \text{ if we simply prepare}\text{ the system in the QSD, with } P_{I \cup B}(0) = \pi^{\text{QSD}}_{I \cup B}$.

Furthermore, when $I \cup B$ is very metastable, i.e., as the decay rate to A vanishes $(K_{2A} \to 0, K_{2B} \to 0)$, the slowest eigenvalue ν_0 will also approach zero. In this limit, w_0^g and, by definition, $\pi^{\text{QSD}}_{I \cup B}$, will be proportional to the invariant local equilibrium distribution of eq 12, which, before any GT renormalization, is simply $\pi_{I \cup B}$. Since $P_{I \cup B}(t) = MP_{I \cup B}(t) = 0_{I \cup B}$ for any $P_{I \cup B}(t)$, we also know that the corresponding left eigenvector w_0^g is proportional to $\pi_{I \cup B}$. The orthonormality relation $w_i^g w_i^R = \delta_{iq}$ provides the constants of proportionality as $w_0^g = \pi_{I \cup B} w_0^R$ and $w_0^R = I_{I \cup B} w_0^g$ $\pi_{I \cup B}$. The limiting form for w_0^g holds even when the limiting form for $\pi^{\text{QSD}}_{I \cup B}$ is no longer the local equilibrium distribution due to a GT renormalization, a point we return to below. The proportionality of w_0^g to $\pi_{I \cup B}$ is sufficient to give $(\tau^*_{\nu_0}) \to 1/k^*_{\nu_0}$ by substitution in eq 26, as expected for single exponential decay.

The same result, again consistent with eq 24, is obtained by calculating the expected waiting time from $P_{I \cup B}(t)$ given by eq 22, given the system has not decayed to A after a time t. This waiting time, which corresponds to $(\tau^*_{\nu_0})$ defined above, would typically be measured in the experiment. Using the notation of eq 14 and multieponential expansion (eq 22), we find
\begin{equation}
(\tau^*_{\nu_0}) = \left(\frac{1}{\nu_0} \right)^{-1}
\end{equation}
\begin{equation}
\lim_{t \to \infty} \frac{I_{I \cup B} P_{I \cup B}(t)}{I_{I \cup B} P_{I \cup B}(0)} = \nu_0 \equiv k^*_{\nu_0}
\end{equation}
\begin{equation}
\pi^{\text{QSD}}_{I \cup B} = \frac{1}{k^*_{\nu_0}}
\end{equation}
meaning that we can identify $(\tau^*_{\nu_0})$ as the correct inverse rate $k^*_{\nu_0}$ when decay to A follows a single exponential relationship.

While the expressions described by eqs 24 and 27 are formally exact, as discussed above, the rate matrix (see eq 12) suffers from significant numerical conditioning issues, meaning that, in practice, evaluation of $k^*_{\nu_0}$ is rarely possible.

To proceed, we apply an identical analysis to the graph-transformed evolution of eq 19, which reduces $I \cup B$ to B^I, the set of renormalized B minima, while retaining the exact waiting time (see eq 20). As above, when B^I is metastable, the rate matrix in eq 19 will have a spectral gap. The eigendecomposition of the transformed rate matrix reads
\begin{equation}
-G_B^{-1} D_B^I = -\sum_i \nu_i^I z_i^L \otimes z_i^L
\end{equation}
\begin{equation}
\lim_{t \to \infty} \frac{P_{B^I}(t)}{0_{B^I}} = \frac{K^{R}_{B^I}}{K^R_{B^I}} = \pi^{\text{QSD}}_{B^I} = \frac{1}{k^*_{\nu_0}}
\end{equation}
which gives a renormalized escape rate.

\begin{equation}
\lim_{t \to \infty} \frac{I_{B^I} P_{B^I}(t)}{I_{B^I} P_{B^I}(0)} = \nu_0 \equiv k^*_{\nu_0}
\end{equation}
To compare $k_{A\to B}^{\text{GT}}$ to $k_{A\to B}^{\text{QSD}}$, the exact waiting time (eq 20) can be written in a form closely resembling eq 25:

$$
\langle \tau_{A\to B}^* \rangle = 1_B \sum_i \left(\nu_i^I \right)^{-1} \tau_{i}^{\text{GT}}(z_i^J P_{iB}^*(0))
$$

(31)

which, again, will be dominated by the first term when B^I is metastable, giving

$$
\langle \tau_{A\to B}^* \rangle = \frac{1}{k_{A\to B}^{\text{QSD}}} \frac{z_i^J P_{iB}^*(0)}{z_i^J P_{iB}^{SS}\pi_{2B}^I} + O(\nu_i^I/\nu_i^F)
$$

(32)

In the highly metastable limit, when the probability flux out of B^I vanishes, we again have $\pi_i^I \to 1_B/(1_B \pi_{2B}^{\text{QSD}})$ and, thus, $\langle \tau_{A\to B}^* \rangle \to 1/k_{A\to B}^{\text{QSD}}$, meaning that $k_{A\to B}^{\text{QSD}} = k_{A\to B}^*$. In this limit, $\pi_{2B}^I \to \pi_{2B}^I$, the invariant distribution of the transformed rate (eq 19) when decay to A is vanishing. Importantly, π_{2B}^I is not equal to π_{2B}^I, which is the Boltzmann distribution in B; this observation will become relevant when comparing the exact rate to previous approximations.

The correspondence between the QSD rate $k_{A\to B}^{\text{QSD}}$ (eq 24) and the transformed QSD rate $k_{A\to B}^{\text{GT}}$ (eq 30) also can be obtained as for eq 27 by calculating the expected waiting time, conditional on not decaying to A,

$$
\langle \tau_{A\to B}^{\text{QSD}} \rangle \equiv \lim_{t \to \infty} \frac{1_B[D_{iB}^I]^{-1}\tau_{i}^{\text{QSD}}(t)}{1_B P_{iB}^*(t)} = \frac{1}{k_{A\to B}^{\text{QSD}}}
$$

(33)

Comparing the two equivalent exact results for the expected waiting time, we see that the transformed QSD rate $k_{A\to B}^{\text{GT}}$ (which we can calculate) and the exact QSD rate $k_{A\to B}^{\text{QSD}}$ (which is typically impossible to calculate) are equal in the metastable limit. Hence, $k_{A\to B}^{\text{GT}}$ can be considered an exact rate in the vast majority of cases, since the GT transformation is typically required only to calculate KTN observables in the highly metastable (rare event) limit, where we have demonstrated exponentially accurate correspondence between the GT QSD rate $k_{A\to B}^{\text{GT}}$ and the formally exact, but typically inceleculable, QSD transition rate $k_{A\to B}^{\text{QSD}}$. We also show in the next section that it is only in this limit, when these rates agree with the transition rate defined as the exact reference in previous work, that they also agree with each other.

To facilitate the comparison to previous results for the transition rate, we end this section by deriving an equivalent expression for the transformed QSD rate (see eq 30). As discussed above, the QSD projects $k_{A\to B}^{\text{GT}}$ from the transformed rate matrix (eq 19). Substituting for $\hat{P}_{iB}^I(t)$ in this equation and using π_{2B}^{QSD} for $P_{iB}^*(t)$ in the numerator and denominator of eq 30 gives

$$
k_{A\to B}^{\text{GT}} = \frac{1_B[D_{iB}^I]^{-1}\tau_{i}^{\text{QSD}}}{1_B \pi_{2B}^{\text{QSD}}}
$$

(34)

By the conservation of branching probabilities and the committor definition given in eq 6, we have $C_{iB} = 1_B B_{AB}^I = 1_B [G_{iB}^J]^I$ (see also eq 17 above). Therefore, we can express the transformed QSD transition rate in the suggestive form

$$
k_{A\to B}^{\text{GT}} = \sum_{i \in B} \frac{|C_{iB}^\alpha| \frac{[\pi_{2B}^I]}{\tau_i^I}}{[\pi_{2B}^I]}
$$

(35)

Equation 35 is a very useful result; it provides an expression for the KTN transition rate that is exact in the metastable limit where a transition rate is well-defined, in a form that we can relate to existing approximations. It is obtained in previous work as $k_{A\to B}^{\text{GT}}$ for steady state (SS) \(^{53,59}\) and $k_{A\to B}^{\text{QSD}}$ for nonsteady state (NSS) \(^{53,53}\) as detailed in the next section.

We note that the exact rate in ref 35 can be considered a sum over the branching probabilities C_{iB}^α for each reactive trajectory in B (i.e., those that reach A before returning to B) weighted by the total escape rate and QSD weight for the corresponding renormalized state in B^I. This formulation is consistent with the probability distribution for reactive trajectories. \(^{62,63}\) We also note the similarity to formulas based on the flux over a dividing surface. \(^{62-65}\)

IV(D). Comparison of the Exact Rate to Previous Work. The steady-state approximation used in the original DPS derivation \(^{49,50}\) assumes that the intervening region I is at steady state, $P_I = 0$, and that the A, B distributions are in local equilibrium, $P_X(t) = \hat{P}_X(t)$ for $X = A, B$. In Appendix F, we show that the transition rate in this approximation is given by

$$
k_{A\to B}^{\text{SS}} = \sum_{b \in B} \frac{|C_{bB}^\alpha| [\pi_{2B}^I]}{\tau_b}
$$

(36)

where the final expression uses $\tau_b = 1/[D_{bB}]_{bb} = [D_{bB}^{-1}]_{bb}$, the expected waiting time for a transition out of minimum b, demonstrating that $k_{A\to B}^{\text{SS}}$ is precisely that which has been derived in previous work. Through comparison with eq 35, we see that the effect of the steady-state approximation is to replace the GT renormalized escape times $1/[D_{bB}]_{bb}$ with $1/[D_{bB}]_{bb}$, and the normalized QSD π_{2B}^{QSD} is replaced by the local equilibrium occupation probability \hat{P}_{bB}. This result amounts to assuming that traversal of the I region is instantaneous, and that the presence of nonzero escape rates from B affects the limiting distribution (which is the content of the QSD). We expect that the latter assumption is acceptable for sufficiently metastable basins, but this first assumption is typically accurate only for simple landscapes.

The non-steady-state (NSS) formula for the transition rate was derived in previous work by considering transitions within the space of $A \cup B$ after renormalizing away the I minima one by one. \(^{53}\) If we denote the corresponding rate constants by an “τ^I” superscript, and treat all the transitions as competing Poisson processes, then the expected waiting time for a transition from b to $A \cup B$ is the renormalized value, $\tau_b^I = 1/(k_{bA}^I + k_{bB}^I)$, and we identify the committor probability $\mathcal{C}_{iB}^\alpha = k_{iB}^\alpha/(k_{bA}^I + k_{bB}^I)$, which is obtained from the renormalized branching probability. \(^{53,53}\) The required rate is then $k_{A\to B}^{\text{NSS}} = \mathcal{C}_{iB}^\alpha \tau_b^I$ and we obtained a mean rate constant by averaging over the local equilibrium distribution in B.

$$
k_{A\to B}^{\text{NSS}} = \sum_{b \in B} \frac{|C_{bB}^\alpha| [\pi_{2B}^I]}{\tau_b^I}
$$

(37)
In the highly metastable limit, $\mathbf{r}_{2b}^{QSD} \rightarrow \mathbf{r}_{2b'}^{QSD}$, we know $\mathbf{r}_0^{QSD} \rightarrow (\mathbf{1}_B \mathbf{r}_{2b'}^{QSD})^{-1}$, meaning that

$$T_{\beta \beta'} = (k_{\beta \beta'}^{\beta})^{-1} = k_{\beta \beta'}^{\beta} \rightarrow (\mathbf{1}_B \mathbf{r}_{2b'}^{QSD})$$

In addition, using the exact waiting time expression described by eq 20 for the full $I \cup B$ rate matrix (eq 12), analogous manipulations yield $k_{\beta \beta'}^{\beta} \rightarrow k_{\beta \beta'}^{\beta} \rightarrow k_{\beta \beta'}^{\beta}$, showing that, in the metastable limit, $k_{\beta \beta'}^{\beta} \rightarrow k_{\beta \beta'}^{\beta}$ and $k_{\beta \beta'}^{\beta} \rightarrow k_{\beta \beta'}^{\beta}$ are all in agreement.

Hence, a well-defined transition rate emerges when we allow the initial conditions to relax to the QSD, and all previous results are recovered by first assuming that the QSD becomes the local equilibrium distribution before any additional assumptions. The difference between the QSD and the local equilibrium view arises from the treatment of the region as isolated, or with an absorbing boundary. In both cases, the limiting distribution corresponds to the eigenvalue of the rate matrix with the smallest magnitude (zero for local equilibrium). The calculated rates will agree when the region defined as reagents in the experiment is sufficiently metastable, so that a local equilibrium setup can be achieved.

In previous work, we considered rates obtained from averaging over kinetic Monte Carlo runs as the exact rate for any given initial distribution, and referred to this rate as $k_{\beta \beta'}^{\beta}$. However, since the exact rate can be calculated in other ways, we prefer the notation $k_{\beta \beta'}^{\beta}$ which is not associated with any particular numerical approach. We finally note that an absorbing boundary condition has previously been used in combination with master equation dynamics to guide the construction of a KTN by defining boundary states.

V. PATH-BASED GT REGULARIZATION FOR SENSITIVITY

To recover a numerically tractable system upon which sensitivity analysis can be performed, we use the GT method to remove states from I which do not participate in or significantly influence a given reaction pathway, leaving a reduced set of states $P \subset I$ with renormalized branching probabilities. Therefore, we remove $I \cup P$, i.e., those in I but not in $A \cup B \cup P$ through the GT method. All branching probabilities and waiting times remain unchanged; the branching probability matrix will reduce in rank, thus typically becoming more amenable to linear algebra manipulations, although it will generally become less sparse. The precise definition of which states (local minima) to retain in P is flexible; indeed, the definition is free to change arbitrarily throughout the computation. In previous applications that remove states one by one, it proved much more efficient to remove I states with the fewest connections first. In the present work, a natural choice is to select all states in I that either lie on or are directly connected to at least one known reaction pathway. Following the notation convention for $E_{X\gamma}$, the GT procedure detailed in eq 11 yields renormalized branching probability matrices $B_{AA}^{\gamma} \rightarrow B_{BP}^{\gamma}$, $B_{BP}^{\gamma} \rightarrow B_{BP}^{\gamma}$, $B_{FP} \rightarrow B_{FP}^{\gamma}$, and $B_{BP} \rightarrow B_{FP}^{\gamma}$, where the latter matrix does not change dimension, but the entries are renormalized.

With corresponding renormalizations for the waiting times as in section III, which are defined as the inverse of the total escape rate D_{FP}^{γ}, we also obtain renormalized rate matrices through

$$K_{X\gamma}^{\gamma} \equiv B_{X\gamma}^{\gamma} D_{FP}^{\gamma}.$$
from \mathcal{B} to \mathcal{A} can be exactly expressed in an identical form to eq 5, namely,

$$
B_{\mathcal{AB}}^{T} = B_{\mathcal{AB}}^{\Gamma\mathcal{P}} + B_{\mathcal{AP}}^{\Gamma\mathcal{P}} G_p B_{\mathcal{PB}}^{\Gamma\mathcal{P}}
$$ (43)

where $G_p \equiv [l_p - B_{\mathcal{PP}}^{\Gamma\mathcal{P}}]^{-1}$. This formulation naturally defines the solution matrices $X \in \mathbb{R}^{N_\text{m} \times N_\text{m}}$ and $Y \in \mathbb{R}^{N_\text{m} \times N_\text{m}}$ that solve the renormalized linear equations

$$
[l_p - B_{\mathcal{PP}}^{\Gamma\mathcal{P}}] X \equiv B_{\mathcal{BP}}^{\Gamma\mathcal{P}}
$$ (44)

to give $B_{\mathcal{AB}}^{T} = B_{\mathcal{AB}}^{\Gamma\mathcal{P}} + B_{\mathcal{AP}}^{\Gamma\mathcal{P}} X$, or, equivalently,

$$
Y [l_p - B_{\mathcal{PP}}^{\Gamma\mathcal{P}}] \equiv B_{\mathcal{BP}}^{\Gamma\mathcal{P}}
$$ (45)

to give $B_{\mathcal{AB}}^{T} = B_{\mathcal{AB}}^{\Gamma\mathcal{P}} + Y B_{\mathcal{PB}}^{\Gamma\mathcal{P}}$. We present both X and Y in anticipation of the results below.

Equation 43 is the central object of analysis in this contribution, as all other network observables can be calculated in the manner detailed in section II. In the next section, we derive the general convergence and sensitivity criteria, with respect to the introduction of additional transition rates in the network. In particular, we focus on a scalar contraction of eq 43, the total branching probability, using the committor vector defined in eq 6:

$$
C_{\mathcal{B}} \equiv C_{\mathcal{B}}^{I}_{\mathcal{B}} \equiv 1_{\mathcal{B}} B_{\mathcal{AB}}^{T} \delta_{\mathcal{B}}^{T}
$$ (46)

Crucially, although only states in $\mathcal{A} \cup \mathcal{B} \cup \mathcal{P}$ are explicitly enumerated in (46), the sensitivity of $B_{\mathcal{AB}}^{T}$ to the introduction of additional transitions involving states in $\mathcal{I} \cup \mathcal{P}$ will still be present in the effective transition rates of the renormalized network. However, kinetically important states should be retained in \mathcal{P} to focus the sensitivity analysis. A detailed analysis of the optimal strategy to determine \mathcal{P} on the fly will be the subject of a future contribution. In the following analysis, we assume that a suitable \mathcal{P} has been chosen, and derive explicit terms for the sensitivity to the introduction of new transitions between previously unconnected states in $\mathcal{A} \cup \mathcal{B} \cup \mathcal{P}$.

VI. SENSITIVITY AND CONVERGENCE

Additional sampling will usually produce new minima and transition states, changing network properties such as $B_{\mathcal{AB}}^{T}$ and overall rates. A key goal of this paper is to derive expressions for the sensitivity of such quantities to additional sampling, thereby allowing the construction of more general measures of sensitivity and curvature. This is a difficult problem as the KTN is a complex object; rate convergence is, in principle, a global optimization problem. Furthermore, any sensitivity measure will necessarily be dependent on the chosen sampling strategy, which determines the nature of the additional (possibly redundant) information returned by additional sampling tasks.

In this work, we consider use of the OPTIM program to perform double-ended transition state searches between candidate state pairs (l, m) via the doubly nudged elastic band (DNEB) method.69 In this procedure, initial pathways are found by launching DNEB searches for “direct” pairs (l, m), where $l \in \mathcal{A}$ and $m \in \mathcal{B}$, which will generally return indirect pathways with many intervening minima in \mathcal{I}. This will then affect the graph-transformed KTN for $\mathcal{A} \cup \mathcal{P} \cup \mathcal{B}$.

Our goal is to derive a pathwise local sampling sensitivity measure, once some initial $\mathcal{B} \leftrightarrow \mathcal{A}$ pathways are found, which can both propose target pairs $(l, m) \in \mathcal{A} \cup \mathcal{P} \cup \mathcal{B}$ for additional DNEB tasks and estimate the expected change in network observables upon the incorporation of new sampling data. If the expected changes can be bounded, a convergence measure then becomes possible.

Generally, there will often be additional criteria that can reduce the number of candidate (l, m) pairs for sensitivity and convergence measures, based on, e.g., the distance in configuration space, or some other metric such as the change in bonding topology. This does not preclude the possibility of $l \leftrightarrow m$ pathways, only the existence of direct $l \leftrightarrow m$ transitions. Furthermore, in the steady-state approximation for intervening minima I, and thus necessarily the renormalized region $\mathcal{P} \subset I$, $k_{\mathcal{A} \rightarrow \mathcal{B}}$ is unchanged to first order by additional transitions entirely within \mathcal{A} or \mathcal{B}, and $B_{\mathcal{AB}}^{T}$ is unchanged by transitions within \mathcal{A}.

While the discovery of new \mathcal{A}, \mathcal{B} states and their connections to \mathcal{P} could also be considered, we will focus here on transitions corresponding to $\mathcal{B} \rightarrow \mathcal{P}$, $\mathcal{P} \rightarrow \mathcal{P}$ and $\mathcal{P} \rightarrow \mathcal{A}$.

If a DNEB search returns an indirect pathway where all the intervening minima are new, the sensitivity expression is equivalent to that for the discovery of a direct transition (with some effective rate). However, in the general case, especially as sampling reaches local convergence, it is more likely that searches will produce indirect pathways involving already discovered minima, modifying a range of branching probabilities. Local criteria for pair selection will likely reduce the possible number of intervening minima. However, generally, the central complication to deriving a sensitivity measure remains: a sampling task starting from a given pair (l, m) will generally yield an indirect pathway with multiple intervening minima, producing matrix modifications $\delta K_{X,Y}$ that affect a larger number of states.

Before analyzing the exact form of the $\delta K_{X,Y}$ matrices following a DNEB search, we look at the most general expression for the change in $B_{\mathcal{AB}}^{T}$ as defined in eq 43, and, thus, the total branching probability $C_{\mathcal{B}}^{I}$ as defined in eq 46, under additional sampling. We employ the component form below where ambiguity could arise. Using eq 2 and the identity $[D_X^{\Gamma\mathcal{P}}]_{lj} = \delta_{lj} [D_{Y'}^{\Gamma\mathcal{P}}]_{lj}$, the change in $D_X^{\Gamma\mathcal{P}}$ under a general perturbation is

$$
[\delta D_X^{\Gamma\mathcal{P}}]_{lj} = \delta_{lj} \sum_y [1_y \delta K_{Y'Y}]
$$ (47)

giving a change in branching probabilities of

$$
[\delta B_{X,Y}^{\Gamma\mathcal{P}}]_{lj} = [\delta K_{X,Y'}^{\Gamma\mathcal{P}}][D_Y^{\Gamma\mathcal{P}}]_{lj} - [K_{X,Y'}^{\Gamma\mathcal{P}}][\delta D_Y^{\Gamma\mathcal{P}}]_{lj} [D_Y^{\Gamma\mathcal{P}}]_{lj}^{-2}
$$ (48)

To propagate these changes to $B_{\mathcal{AB}}^{T}$, defined in eq 43, we need to calculate δG_p. For any matrix M, applying the chain rule to $\delta (M^{-1}) = 0$ yields $\delta (M^{-1}) = -M^{-1} \delta MM^{-1}$. For the renormalized Green’s function G_p, for a given $\delta B_{\mathcal{PP}}^{\Gamma\mathcal{P}}$ we have

$$
G_p = [l_p - B_{\mathcal{PP}}^{\Gamma\mathcal{P}}]^{-1} \Rightarrow \delta G_p = G_p \delta B_{\mathcal{PP}}^{\Gamma\mathcal{P}} G_p
$$ (49)

This gives a total change in $B_{\mathcal{AB}}^{T}$ of

$$
\delta B_{\mathcal{AB}}^{T} = \delta B_{\mathcal{AB}}^{\Gamma\mathcal{P}} + \delta B_{\mathcal{AP}}^{\Gamma\mathcal{P}} G_p B_{\mathcal{PB}}^{\Gamma\mathcal{P}} + B_{\mathcal{AP}}^{\Gamma\mathcal{P}} G_p \delta B_{\mathcal{PP}}^{\Gamma\mathcal{P}} + B_{\mathcal{AP}}^{\Gamma\mathcal{P}} G_p \delta B_{\mathcal{PP}}^{\Gamma\mathcal{P}}
$$ (50)
where we revert to matrix products for clarity of presentation. In terms of the solution matrices X and Y, defined in eqs 44 and 45, we can write δB_{br}^F in the compact form,

$$
\delta B_{\text{br}}^F = \delta B_{\text{br}}^{\text{VP}} + \delta B_{\text{br}}^{\text{FP}} X + Y \delta B_{\text{br}}^{\text{FP}} + \gamma \delta B_{\text{br}}^{\text{FP}} X
$$

which motivates the linear algebra formulation. Therefore, the total branching probability C_{br}^{A} undergoes a total change:

$$
\delta C_{\text{br}}^{\text{A}} = 1_{I_b} \delta B_{\text{br}}^{\text{FP}} I_b^T + 1_{I_c} \delta B_{\text{br}}^{\text{FP}} x + y \delta B_{\text{br}}^{\text{FP}} x + y \delta B_{\text{br}}^{\text{FP}} x
$$

where $x = XI_b^T$ and $y = 1_{I_c}Y$ are each obtained with a single linear solution. In the following, we focus on the sensitivity to new transitions that affect $\mathcal{A} \rightarrow \mathcal{P} \rightarrow \mathcal{B}$ paths, i.e., those that pass through \mathcal{P}, meaning that we assume $1_{I_b} \delta B_{\text{br}}^{\text{FP}} I_b^T = 0$ in the following expressions for $\delta C_{\text{br}}^{\text{A}}$. It is straightforward to include this contribution to the general sensitivities (eq 55).

VI(A). Sensitivity to Any Direct or Pseudodirect Transition. When a sampling task returns a direct transition between (I,m), the rate matrix modifications δK_{XY} have a simple closed form. Furthermore, this closed form is also valid when the sampling task returns an indirect transition, where all intermediate states were previously unknown, which is a case we label “pseudodirect”. With a forward ($l \rightarrow m$) rate of k^{U}_l, the reverse ($m \rightarrow l$) rate is defined to be $\phi^{\text{m}}k^{\text{U}}_l$. Before any GT renormalization, detailed balance implies $\phi^{\text{m}} = [\pi_y]/[\pi_x]$, i.e., the ratio of components of the steady-state Boltzmann distribution. The GT renormalization $\Gamma \rightarrow \mathcal{P}$ generally will modify the stationary distribution as the effective rates between states changes. Using the renormalized rate matrices K_{XY}^{GP}, we estimated the change in the steady-state distribution by using the Boltzmann distributions $\pi_{\mathcal{A}}$, $\pi_{\mathcal{B}}$ and $\pi_{\mathcal{P}}$ of the retained states as a preconditioner for an iterative minimization. While this effect could give large changes if only sparsely connected, high energy states are retained during the GT procedure, as we typically retain highly connected, low energy states (those that participate in reaction pathways), the proportional changes in the ϕ^{m} were extremely small, meaning that we use the Boltzmann distributions to estimate the ϕ^{m} values. Therefore, the modification to the existing rate matrix is given by

$$
\delta B^{n}_{m} = k^{\text{U}}_l \delta \phi^{\text{m}}_l \quad l \in \mathcal{X}, \ m \in \mathcal{Y}
$$

$$
\delta B^{n}_{m} = \phi^{\text{m}} k^{\text{U}}_l \delta \phi^{\text{m}}_l \quad l \in \mathcal{X}, \ m \in \mathcal{Y}
$$

$$
\delta B^{n}_{m} = k^{\text{U}}_l \delta \phi^{\text{m}}_l + \phi^{\text{m}} k^{\text{U}}_l \delta \phi^{\text{m}}_l \quad l, \ m \in \mathcal{X}
$$

where δ^{n}_{m} is the finite difference operator for $l \in \mathcal{X}, \ m \in \mathcal{Y}$. In eq 53, k^{U}_l is a “test rate” that represents the expected value of the as-yet-undiscovered transition rate. When using local saddle point search routines driven by high-temperature molecular dynamics, it is possible to derive monotonically increasing Bayesian estimators for sampling completeness, which can be used to estimate k^{U}_l. However, when minima and saddle points are found using geometry optimization procedures, such as DNEB calculations, sampling completeness estimators are not available. In the numerical examples below, we discuss various approaches to determining an appropriate k^{U}_l, the simplest being an expected upper bound based on prior knowledge of the system under study, such as $k^{\text{U}}_l = 10 \text{ THz}$ for thermally activated processes in metals.

The rate matrix modifications given by eq 53 cause changes δB_{br}^{n} in the branching probabilities as detailed in eq 51. Inserting these into eq 52 gives the total propagated change, $\delta C_{\text{br}}^{\text{A}}$, for a single direct transition pathway $(l, m) \in (\mathcal{X}, \mathcal{Y})$. We will derive explicit expressions of these direct transitions in the three cases of interest: $(l, m) \in (\mathcal{P}, \mathcal{P})$, $(\mathcal{B}, \mathcal{P})$ and $(\mathcal{P}, \mathcal{A})$.

While the first term in eq 52 accounts for possible changes due to direct connections bypassing \mathcal{P}, our focus is on the remaining terms that gauge the effect of changes in the structure of the intervening region of the network. For all valid candidate pairs, we can obtain a predicted change in the branching probability through eq 52 and, thus, rank all pairs as candidates for a double-ended saddle search. However, this approach applies for a direct or pseudodirect pathway. As a result, before giving explicit expressions for direct transitions, we will first consider indirect paths.

VI(B). Sensitivity to an Indirect Transition. In the general case, a sampling task targeting (l, m) will produce a pathway through \mathcal{M} intervening minima $\pi_p \rightarrow \pi_p \ldots \pi_p$. Considering a general summation $\delta K = \sum \delta K_p$, with all superscripts suppressed for brevity, we note that the change in branching probabilities is a linear sum to first order:

$$
\delta B = \sum_n \delta K_n D^{-1} - K \text{diag}(1\delta K_n) D^{-2} = \sum_n \delta B_n
$$

where we have used $\delta(D^{-1}) = \text{diag}(1\delta K) D^{-2}$ to first order, with $\text{diag}(1\delta K)$ the diagonal matrix with elements given by the components of the vector $|1\delta K_n| = \delta K_n$ the total change in escape rate from minimum j. If new intervening minima π_p are found, the dimensions of \mathbf{B}, \mathbf{K}, and \mathbf{D} must reflect the final dimension of the space after the new path is added to the database. Therefore, we can decompose the change in total escape rate into contributions from direct transitions. Since the change in total branching probability is linear in the δK_{XY}, the first-order propagated change to network observables for indirect transitions will then simply be the sum of the propagated changes due to the composite direct transitions. Hence, to investigate the effect of indirect transitions, it is sufficient to evaluate and rank all of the direct transitions in the manner described above, which is the task of the next section.

VI(C). Sensitivity to Direct Transitions. Details are collected in Appendix H. The final expressions for changes in the scalar committor probability are

$$
(l, m) \in (\mathcal{P}, \mathcal{P}) \quad \delta^{mp}_{\text{br}}C_{\text{br}}^{\text{A}} = \delta^{mp} \phi^{\text{m}}C_{\text{br}}^{\text{A}} = \delta^{mp} \phi^{\text{m}}(y_m - [y])D_0^{m}x
$$

$$
(l, m) \in (\mathcal{B}, \mathcal{P}) \quad \delta^{b\mathcal{P}}C_{\text{br}}^{\text{A}} = \delta^{b\mathcal{P}} \phi^{\text{b\mathcal{P}}}C_{\text{br}}^{\text{A}} = \delta^{b\mathcal{P}} \phi^{\text{b\mathcal{P}}}(y_m - [y]D_0^{m}x + \delta^{b\mathcal{P}}\phi^{\text{b\mathcal{P}}}(y_m)D_0^{m}x
$$

$$
(l, m) \in (\mathcal{P}, \mathcal{A}) \quad \delta^{\text{P\mathcal{A}}}C_{\text{br}}^{\text{A}} = \delta^{\text{P\mathcal{A}}} \phi^{\text{P\mathcal{A}}}C_{\text{br}}^{\text{A}} = \delta^{\text{P\mathcal{A}}} \phi^{\text{P\mathcal{A}}}(1 - [y])D_0^{m}x
$$

where δ^{mp}_{br} is a one-sided difference operator, which includes only the changes due to the $l \rightarrow m$ path. As expected, self-transitions $l = m$ in \mathcal{P}, which are permitted after renormalization, do not affect the committor probability. The result for $\delta^{mp}_{\text{br}}C_{\text{br}}^{\text{A}}$ is independent of $m \in \mathcal{A}$, because of the sum over \mathcal{A} states in the definition of the committor vector in eq 6.

The convergence of these changes in the committor is investigated below for two benchmark systems involving
atomic clusters of \(N \) atoms bound by the Lennard-Jones potential \((\text{LJ})_n \), using the regularization techniques developed above. We have tested the sensitivity expressions by removing known rates and looking at the predicted and actual change in branching probabilities. In all these tests, excellent agreement was found, demonstrating the self-consistency of our approach.

VII. SELECTION, DISTRIBUTION, AND ALLOCATION OF SAMPLING TASKS

When an accurate sensitivity can be evaluated for all candidate direct transitions, their influence on network properties can be ranked according to the change in the scalar committor value \(\delta^\text{ml} C^A_B \). With a given computational budget, DNEB calculations can then be assigned according to this ranking. However, this approach may not ensure optimal computational efficiency; it is likely that the number of DNEB images needed to represent a pathway will scale approximately linearly with the distance between candidate minima, increasing the computational cost. A possible strategy is to weight the ranking according to the number \(N_{\text{im}} \) of DNEB images that would be assigned for the task, and consider \(\delta^\text{ml} C^A_B / N_{\text{im}} \) to reflect the fact that multiple less-sensitive transitions may yield better computational return than a single sensitive transition between distant minima.

Since a DNEB calculation is a formally deterministic process, once a given pair \((l, m)\) has been targeted for sampling, it should be removed from all future selections, i.e., set \(\delta^\text{ml} C^A_B = 0 \). However, we note that many strategies could yield multiple pathways on repeated DNEB searches between the same two minima. For example, multiple initial pathways could be attempted or stochastic forces or energetic penalty functions could be applied during the DNEB minimization. In this case, multiple DNEB requests could return different results and, therefore, the \(\delta^\text{ml} C^A_B \) should be reevaluated each sampling cycle, or multiple DNEB requests could be assigned to a given pair in one cycle.

VIII. CONSTRUCTION OF CONFIDENCE INTERVALS FOR \(C^A_B \)

The local sensitivity analysis detailed here clearly cannot solve the global problem of whether there is some other distant set of unexplored pathways that will drastically change the \(\mathcal{A} \leftrightarrow \mathcal{B} \) kinetics. Rather, we aim to make some statement on the convergence of the transition rate associated with the current database of sampled pathways. The sensitivity metric works well if the to-be-discovered transition is either a direct connection between two known states, or an indirect connection involving only newly discovered states; in either case, by postulating an upper bound \(\tilde{k} \) on the to-be-discovered transition rate \((l, m)\), an upper bound on the absolute change in the branching probabilities is obtained, to first order. We use the absolute change to emphasize that this does not mean additional connections necessarily increase \(C^A_B \).

Our convergence measure for the path finding search procedure involves upper and lower confidence intervals \(\sigma^\pm \) for the branching probability \(C^A_B \). This sensitivity machinery was combined with two estimators of the network structure, namely, the expected value of newly discovered transition rates \(k^l \) above, and the connection sparsity \(\xi \). Rigorous, monotonic estimators of unseen rates have been developed in dynamic sampling strategies, where the dynamical trajectories provide a well-defined probability law for discovering transitions. In the present context, where a database of stationary points is harvested using geometry optimization, no such law exists, meaning that the rate estimator \(\tilde{k} \) (defined below) will be nonmonotonic, with uncontrolled fluctuations upon the incorporation of new sampling data. A sensible strategy in this scenario is to consider multiple estimators in parallel, using the collective information to guide decisions on convergence.

In this final section, we test some preliminary estimators, demonstrate the sensitivity framework that is a main object of this paper; future work will concentrate on the optimal form of estimation and, thus, how to deduce more-rigorous convergence bounds. The present contribution gives the computational framework upon which such convergence concepts can be tested.

Our estimator \(\tilde{k} \) has one hyperparameter, a postulated maximum unknown rate \(k^\text{max} \), which we set to \(k^\text{max} = \omega_0 \exp(-3) \), where \(\omega_0 = 5 \) in reduced units for the LJ potential. This value corresponds to an energy barrier of \(3/\beta \), around the limit of the rare event regime. Future work will investigate the dependence on the final sensitivities to estimates of \(k^\text{max} \) and when it is beneficial to spend more effort in the estimation. In addition, we measure the logarithmic mean and variance of the observed rates, correcting for differences in the free energy of initial and final states through

\[
\bar{k} = \frac{1}{\beta} \exp[-\beta(F_i - \max(F_i, F_j))]
\]

\[
\langle \ln k \rangle = \frac{1 \langle \ln \bar{k} \rangle}{\langle \ln k \rangle}
\]

where \(F_i \) is the saddle point free energy \(F_i = F_i^0 \), \(\beta = 1/k_B T \), with \(k_B \) being the Boltzmann constant and \(T \) the temperature, meaning that \(F_i^0 - \max(F_i, F_j) \) is the lower free energy barrier for the \(ij \) transition. We consider the first and second moments, corresponding to \(n = 1 \) and \(2 \) in constructing the rate estimator below.

The logarithmic mean \(\langle \ln \bar{k} \rangle \) was chosen to account for the wide range in observed rates; it can be considered as estimating the average free-energy barrier. Nevertheless, only if the distribution is suitably well peaked should this mean value be taken as informative. As a result, our preliminary estimator \(\tilde{k} \) for the newly discovered rates reads

\[
\tilde{k} = k^\text{max} + \left(e^{\langle \ln \bar{k} \rangle} - k^\text{max} \right) \exp(1 - \langle (\ln \bar{k})^2 \rangle/\langle \ln \bar{k} \rangle^2)
\]

meaning that a large geometric variance in the observed rates suppresses the influence of the geometric mean observed rate \(k^\text{max} \).

The sensitivity analysis assigns an expected change \(\delta^\text{ml} C^A_B \) to the branching probabilities upon the discovery of a new transition for every possible transition \(m \leftrightarrow l \) in the network, where \(m \in \mathcal{M} \), \(l \in \mathcal{M} \), apart from already-sampled pairs, where we set the sensitivity to zero.

However, real transition networks are typically very sparse, meaning that the sum of all possible sensitivities could be misleadingly large, as many of the possible transitions do not exist. Therefore, we also estimate the network sparsity \(\xi \), which gives the approximate probability that a search should return a successful connection. We estimate \(\xi \) with
the number of found transition states, minima, and DNEB searches, respectively, and \(N_{\text{thresh}} \) is a hyperparameter controlling the influence of empirical data, here, set to 5000.

Therefore, our first estimator bounds \(\xi \sigma^{\pm}_{\xi} \) are simply the sum of all possible positive or negative changes, multiplied by the sparsity \(\xi \):

\[
\xi \sigma^{\pm}_{\xi} \equiv \xi \sum_{\delta k, j > 0} \delta \sigma^{ml}_{k, j} C_{ij}^{A} \quad \xi \sigma^{\pm}_{\xi} \equiv \xi \sum_{\delta k, j < 0} \delta \sigma^{ml}_{k, j} C_{ij}^{A}
\]

(60)

giving the projected change \(\xi \sigma^{\pm}_{\xi} \equiv \xi \sigma^{\pm}_{\xi} - \xi \sigma^{\pm}_{\xi} \).

We can also define the maximal bounds \(\sigma^{\pm}_{\xi} \) due to the discovery of a single transition as

\[
\sigma^{\pm}_{\xi} \equiv \max \delta \sigma^{ml}_{k, j} C_{ij}^{A}, \quad \sigma^{\pm}_{\xi} \equiv \min \delta \sigma^{ml}_{k, j} C_{ij}^{A}
\]

(61)

giving the total single change \(\sigma \equiv \sigma^{+}_{\xi} - \sigma^{-}_{\xi} \).

We also use the sparsity to estimate the expected number of additional connections. Assuming independence, the probability of finding \(m \) connections is simply \(\xi^{m}(1 - \xi) \), giving an expected number of connections \(\langle m \rangle \equiv \xi(1 - \xi) \). We combine this expression with the average changes to give our last investigated bounds \(\sigma^{\pm}_{\xi} \), defined as

\[
\sigma^{\pm}_{\xi} \equiv \left(\frac{\xi}{1 - \xi} \right) \sum_{\delta k, j > 0} \delta \sigma^{ml}_{k, j} C_{ij}^{A} \sum_{\delta k, j > 0} 1
\]

(62)

and similarly for \(\sigma^{\pm}_{\xi} \) with the constraint \(\delta C_{ij}^{A} < 0 \).

Using the first-order derivative to predict changes in a nonlinear quantity is clearly inaccurate when either the derivative or the predicted changes in the argument (here, \(k^{\nu} \)) are very large. However, higher derivatives would require multiple linear solves, imposing a prohibitive computational cost.

Instead, we note that \(C_{ij}^{A} \) must be positive and will have a finite upper bound due to eq 17. As a result, while we use the raw first derivative value for the sensitivity analysis, when plotting the predicted sensitivity bounds \(C_{ij} \pm \sigma_{2} \) in the next section, we restrict the range of the possible changes through the mapping

\[
C_{ij}^{A} + \sigma_{2} \rightarrow 1 - (1 - C_{ij}^{A}) \exp \left(-\frac{\sigma_{2}}{1 - C_{ij}^{A}} \right) \leq 1
\]

(63)

\[
C_{ij}^{A} - \sigma_{2} \rightarrow C_{ij}^{A} \exp \left(-\frac{\sigma_{2}}{C_{ij}^{A}} \right) \geq 0
\]

(64)

It is straightforward to show that, for small values of \(\sigma_{2} \), we recover the linear dependence \(C_{ij} \pm \sigma_{2} \), meaning that the behavior close to convergence is unchanged. We emphasize that this mapping is only used for visualization purposes.

IX. VALIDATION TESTS ON LJ38

To test the sampling protocol described in this work, an “exactly known” rate matrix was constructed using the LJ38 energy landscape from the Cambridge Landscape Database. As is well-known, LJ38 has a double-funnel landscape with two competing morphologies, corresponding to two free-energy minima at low temperatures.

The double-funnel landscape of the LJ38 cluster provides natural definitions for the \(A \) and \(B \) basins. The \(B \) region was chosen as a standard set of 395 low-energy structures based upon incomplete icosahedra, while the \(A \) region was chosen as a standard set of five low-energy structures based upon the truncated octahedron global minimum. The sampling was initially restricted to a truncated subnetwork of 900 minima that contained the minimum energy pathway, meaning that \(P = I \). The truncated landscape and minimum free-energy configurations from \(A \) and \(B \) are shown in Figure 1.

1. **Figure 1.** Discontinuity graph for a LJ38 landscape truncated to a total of 900 states, in Lennard-Jones energy units (\(\epsilon \)). The cuboctahedral (\(A \)) and icosahedral (\(B \)) basins are colored orange and green, respectively. Minimal free-energy configurations from each basin are shown.

The minimum free energy path for \(\beta = 10 \) (in LJ units) has 28 intermediate states with a large effective barrier height, representing a realistic test of the sensitivity framework developed here for a rare event.

The sampling was initially restricted to a truncated subnetwork of 900 minima that contained the minimum energy pathway, meaning that \(P = I \). The truncated landscape and minimum free-energy configurations from \(A \) and \(B \) are shown in Figure 1.

To simulate DNEB connection attempts for a pair \((ij)\), Dijkstra’s shortest path algorithm, as implemented in scipy, was applied to an unweighted, undirected graph created from the reference rate matrix. The use of an unweighted graph is to simulate the fact that the DNEB algorithm has an energy penalty for the length of the path and is unlikely to find the fastest path between two distant states in one iteration.

The “sampled” rate matrix initially contained all \(A \rightarrow A \) and \(B \rightarrow B \) connections, a single known \(B \rightarrow A \) path and, for each state on the path, the result of a simulated single ended saddle search, which returned, at most, two connecting states. To create an initial \(B \rightarrow A \) path, we used the simulated DNEB routine described above; the initial sampled set contained ~50 states in \(I \).

To give high data resolution for Figures 2 and 3, the sensitivity analysis was used to identify, in each cycle, the two most sensitive state pairs that had not been previously sampled. If these simulated searches returned no new results, the next two most sensitive pairs were considered, and so on, until at least one new transition state was found. In practice, as
discussed above, it is likely beneficial to sample many more pairs simultaneously; a detailed investigation of the optimal deployment will be the subject of future work.

In Figure 2, we present the results from this procedure with the convergence metrics described above. For clarity of visualization, large values of the sensitivities were regularized with eqs 63 and 64. A few “spikes” in the committor probability are observed, because of the discovery of a newly sensitive connection, which will thus be ranked very high for the next cycle. Since the actual change is typically much less than the conservative predicted bound, the convergence measures return to essentially the same values as previously observed.

Sampling the most sensitive connections quickly yields the correct branching probability, but much more sampling is required to be confident of convergence. As expected, the average connection sensitivity $\bar{\sigma}^c$ is the fastest to converge, followed by the maximum individual sensitivity σ^c_{max}, and then the total sensitivity $\bar{\sigma}^{c\text{tot}}$. Importantly, the confidence intervals contain all changes in the estimates of $C^A_{\beta_1}$ and the projected values are also stable.

The differing rates of convergence between the various sensitivities give insight into the nature of transitions over the landscape. For example, the comparatively slow convergence of $\bar{\sigma}^{c\text{tot}}$ to σ^c_{max} indicates that the existing landscape requires a new pathway to significantly change the branching probability. Future work will investigate generalizing these ideas within a Bayesian framework.

We also applied the same methodology to a much larger LJ$_{38}$ landscape that initially contained 5310 states, using the graph transformation method to give $P \subset I$, with 126 states around the minimum free-energy path. While the effective rank is much lower, the resulting KTN has a much higher density of connections, because of the greater number of possible connections between the retained nodes. In the simulated sampling routine that we present here, this requires a much greater degree of search coverage for similar degrees of convergence, but over a much smaller space of possible connections. However, in a true sampling routine, the discovery of a new transition will affect many nodes in the transformed system, via the same mechanisms that lead to the much higher connection density. As a result, a similar total number of DNEB searches will be required in each case. A detailed case study of this procedure being applied to aid KTN construction will be treated in future work.

The higher connection density also leads to a larger density of “spikes” in the convergence plots. However, this is partially a consequence of only sampling one connection pair per cycle for the purposes of illustration; when sampling more pairs per cycle, the density of spikes decreases.

To conclude this section, we emphasize that, in all of these test examples, we have made no effort to filter DNEB attempts based on knowledge of the existing KTN nor structural or energetic properties of the minima pair under consideration, meaning that our metrics consider all possible interstate connections. Optimal strategies for applying the GT renormalization and estimating the probability that a given minima pair will yield a new connection will be the subject of another contribution.

X. CONCLUSIONS

In this contribution, we have developed a linear algebra formulation for calculating waiting times and rates corresponding to a kinetic transition network (KTN), to develop a tractable scheme for judging the convergence, with respect to sampling. We have first provided expressions for the observables within a hierarchy of approximations, starting with a steady-state assumption for intervening minima, and local equilibrium for the reactants. We establish the equivalence of the resulting matrix/vector representations and formulas previously derived by considering sums over pathways directly. The extension to exact rates and waiting times further enables us to connect results based on a local equilibrium for the reactants. We establish the equivalence of the resulting matrix/vector representations and formulas previously derived by considering sums over pathways directly. The extension to exact rates and waiting times further enables us to connect results based on a local equilibrium for the reactants.
additional insight, as well as a more efficient way to compute some of the properties of interest. In particular, we derive formulas to estimate the sensitivity of branching matrices, committer probabilities, and hence rates when new network connections are hypothesized. These sensitivity measures can be used to direct the sampling strategy to converge the database of stationary points, with respect to rates.

To test convergence, we have applied the sensitivity calculations to existing databases for an atomic cluster bound by the Lennard-Jones potential, namely LJ_{68}, where two morphologies compete to give a double-funnel landscape that causes broken ergodicity, and structural interconversion constitutes a rare event. Starting from small subsets of the database, we use the sensitivity indices to propose new searches for connections between local minima, and simulate their discovery using the known connectivity of the full databases. In each case, the sensitivities and bounds on the committer probability initially exhibit large fluctuations, which decrease as the sampling progresses. The bounds converge rapidly to the correct values, demonstrating that this framework should provide a powerful tool for constructing and converging KTNs in new systems. This approach is generally applicable throughout molecular and condensed matter science, and we envisage future applications to problems ranging from atomic and molecular clusters, through biophysics, to condensed matter.

APPENDIX A: GLOSSARY OF USEFUL FORMULAS

Here, we summarize various results that are useful for the derivations. Note that the identities for B and G matrices do not hold for the corresponding \tilde{B} and \tilde{G} versions.

Compound branching probabilities and renormalized waiting time:

$$B_{A\rightarrow B} = B_{AB} + B_{A\tilde{I}}G_{\tilde{I}}B_{\tilde{I}B} \equiv \tilde{B}_{AB}$$

$$B_{B\rightarrow \bar{B}} = B_{\bar{B}B} + B_{B\tilde{I}}G_{\tilde{I}}B_{\tilde{I}B} \equiv \tilde{B}_{\bar{B}B}$$

$$G_{\bar{B}\rightarrow B} = (I_B - B_{B\bar{B}})^{-1} = (I_B - (B_{\bar{B}B} + B_{B\tilde{I}}G_{\tilde{I}}B_{\tilde{I}B}))^{-1} \equiv \tilde{G}_{\bar{B}B}$$

$$I_B D_{\tilde{I}}G_{\tilde{I}}B_{\tilde{I}B} + I_B D_{\tilde{I}B}^{-1} \equiv I_B [D_{\tilde{I}B}^{-1}]$$

(A1)

Here, $B_{A\rightarrow B}$ is the probability corresponding to all possible paths that leave \bar{B} and reach \mathcal{A} via any number of steps in I without returning to \bar{B}; $B_{\bar{B}\rightarrow \bar{B}}$ is the probability corresponding to all possible paths that leave \bar{B} and return to \bar{B} via any number of steps in I without reaching \mathcal{A}. The G matrices sum over all paths consisting of any number of steps defined by simple or compound branching matrices. Hence, $G_{\bar{B}\rightarrow B}$ is the sum of probabilities for all nonreactive paths. The quantities identified with a superscript I also correspond to the values used in graph transformation renormalization after all the intervening minima in the I region are removed.

Identities involving G matrices:

$$G_{\chi} = (I_{\chi} - B_{\chi\chi})^{-1}, \quad G_{\chi} = I_{\chi} + G_{\chi}B_{\chi\chi}, \quad G_{\chi} = I_{\chi} + B_{\chi\chi}G_{\chi}$$

$$B_{\chi\chi}G_{\chi} = G_{\chi}B_{\chi\chi}, \quad \partial_\chi (G_{\chi})|_{\chi=0} = G_{\chi} \partial_\chi (B_{\chi\chi})|_{\chi=0} G_{\chi}$$

(A2)

The G matrix derivative for simple branching matrices is given as follows:

$$\partial_\chi (G_{\chi})|_{\chi=0} = G_{\chi} D_{\chi\chi}^{-1} G_{\chi} - D_{\chi\chi}^{-1} G_{\chi} = (G_{\chi} - I_{\chi}) D_{\chi\chi}^{-1} G_{\chi} = G_{\chi} B_{\chi\chi} D_{\chi\chi}^{-1} G_{\chi}$$

(A3)

The committor probabilities are defined as

$$C_{\bar{B}} = 1_B B_{\bar{B}B}^T = 1_B [G_{\bar{B}B}^T]^{-1}$$

so

$$C_{\bar{B}} = [B_{\bar{B}B}]_{\bar{B}B}, \quad C_{\bar{B}}^A = [1_B [G_{\bar{B}B}^T]^{-1}]_{A}, \quad \text{and } C_{\bar{B}}^{b'} = [B_{\bar{B}B}^{b'b'}]_{b'b'}$$

(A4)

for minima $b, b' \in \bar{B}$ and $a \in \mathcal{A}$.

Identities related to the conservation of probability:

$$I_B = \sum_{y \in \mathcal{A}} 1_B B_{yB} \Rightarrow \sum_{y \notin \mathcal{A}} 1_B B_{yA} G_{\chi} = 1_B,$$

$$I_B B_{A\rightarrow B} + I_B B_{A\rightarrow \bar{B}} = I_B,$$

$$I_B B_{A\rightarrow B} - I_B B_{A\rightarrow \bar{B}} = I_B,$$

(A5)

APPENDIX B: DERIVATION OF EQ 10

The expected waiting time for a transition from any state $z \in \mathcal{Z}$ to any another state in \mathcal{Z} via an arbitrary number of steps between states in I, as presented in eq 10, is given by the z component of

$$1_z \frac{\partial}{\partial z} (\tilde{B}_{zz}^I) |_{z=0} = 1_z \frac{\partial}{\partial z} (\tilde{B}_{zz}^I + \tilde{B}_{z\bar{B}}^I \tilde{G}_{\bar{B}z}^I) |_{z=0}$$

$$= 1_z \tilde{B}_{zz}^I D_{zz}^{-1} + 1_z B_{zz} D_{zz}^{-1} + 1_z B_{zz} \frac{\partial}{\partial z} (\tilde{G}_{\bar{B}z}^I) |_{z=0} + 1_z B_{zz} \tilde{G}_{\bar{B}z}^I D_{zz}^{-1} = 1_z \tilde{B}_{zz}^I D_{zz}^{-1} + 1_z B_{zz} D_{zz}^{-1}$$

$$+ 1_z B_{zz} \frac{\partial}{\partial z} (\tilde{G}_{\bar{B}z}^I) |_{z=0} + 1_z B_{zz} \tilde{G}_{\bar{B}z}^I D_{zz}^{-1} = 1_z \tilde{B}_{zz}^I D_{zz}^{-1} + 1_z B_{zz} D_{zz}^{-1}$$

$$+ 1_z B_{zz} \frac{\partial}{\partial z} (\tilde{G}_{\bar{B}z}^I) |_{z=0} + 1_z B_{zz} \tilde{G}_{\bar{B}z}^I D_{zz}^{-1} = 1_z \tilde{B}_{zz}^I D_{zz}^{-1} + 1_z B_{zz} D_{zz}^{-1}$$

$$+ 1_z D_{zz}^{-1} + (1_z B_{zz} + 1_z B_{zz}) D_{zz}^{-1} = 1_z D_{zz}^{-1} + (1_z B_{zz} + 1_z B_{zz}) D_{zz}^{-1}$$

$$= 1_z D_{zz}^{-1} + 1_z B_{zz} D_{zz}^{-1} = 1_z D_{zz}^{-1}$$

(B1)

The sum of path weights out of every component of \mathcal{Z} is unity, because $1_z B_{zz} = 1_z$, so we obtain the average escape times from the above construction.

The derivative $\tilde{G}_{\bar{B}z}^I$ used above, can be obtained by differentiating the series form $\sum_{n=0}^{\infty} (\tilde{B}_{zz}^I)^n$, or using

$$\frac{\partial}{\partial z} \tilde{G}_{\bar{B}z}^I |_{z=0} = -G_{\bar{B}z} \frac{\partial}{\partial z} (\tilde{G}_{\bar{B}z}^I) |_{z=0}$$

(B2)

and $\tilde{G}_{\bar{B}z}^I = I_{\bar{B}} - \tilde{B}_{zz}^I$, to obtain $\tilde{G}_{\bar{B}z}^I |_{z=0} = G_{\bar{B}z} D_{\bar{B}z}^{-1} G_{\bar{B}z} - D_{\bar{B}z}^{-1} G_{\bar{B}z} = (G_{\bar{B}z} - I_{\bar{B}}) D_{\bar{B}z}^{-1} G_{\bar{B}z} = G_{\bar{B}z} B_{\bar{B}z} D_{\bar{B}z}^{-1} G_{\bar{B}z}$ (see Appendix A for a summary of useful relations between these quantities).
APPENDIX C. DERIVATION OF MATRIX EXPRESSION FOR EXACT WAITING TIME

Writing eq 12 in the more-compact form $P_{JUB} = MP_{JUB}$ and a row vector of ones of dimension corresponding to $I \cup B$ as I_{JUB}, we can show

$$I_{JUB}M = -I_A(K_{AI}, K_{AB})$$

(C1)

and, hence,

$$P(\tau \in [t, t + dt]) = -I_{JUB}P_{JUB} dt = -I_{JUB}MP_{JUB} dt = I_A(K_{AI}, K_{AB})P_{JUB} dt$$

(C2)

Integrating the master eq 12 formally to give $P_{JUB}(t) = \exp(Mt)P_{JUB}(0)$ and performing the integrals in eq 14 gives

$$\langle \tau_{\hat{A} \to B} \rangle = \frac{-I_A(K_{AI}, K_{AB})M^{-1}P_{JUB}(0)}{I_A(K_{AI}, K_{AB})M^{-1}P_{JUB}(0)}$$

(C3)

Using eq C1, we can simplify the above expression, since $I_{JUB} = -I_A(K_{AI}, K_{AB})M^{-1}$, we have

$$I_A(K_{AI}, K_{AB})M^{-1}P_{JUB}(0) = -I_{JUB}P_{JUB}(0) = -1$$

(C4)

for the given initial conditions. Hence,

$$\langle \tau_{\hat{A} \to B} \rangle = -I_{JUB}M^{-1}P_{JUB}(0)$$

and

$$\langle \tau_{\hat{A} \to B} \rangle = (I_A, I_B)[K_{II} - D_I \quad K_{IB} \quad K_{BI} - D_B]^{-1}P_B(0)$$

where $G_X^{-1} = \mathbb{I} - B_X X$. To proceed, we consider the linear system

$$G_X^{-1}x = 0_Y$$

and we recover x_{BS} directly.

APPENDIX D. DERIVATION OF EXACT PASSAGE TIME EXPRESSIONS

Here, we follow section III and consider the waiting time associated with a sum over all paths that start in B and reach any minimum in \hat{A} via any number of steps in the I region with returns to \hat{B} allowed. The path weight can be factorized into a component to account for nonreactive paths starting and finishing in B via any number of steps in I, and then a reactive path from B to \hat{A} via the I region:

$$\langle \tau_{\hat{A} \to B} \rangle = \partial_x (I_A \hat{B}_0 G_{IB})l_0 P_0(0)$$

(D1)

This formulation gives the average waiting time for each component in B, because the paths weights sum to unity in each case. From eq 17, we have $I_A B_0 \hat{A} G_{IB} = 1_B$. Then, from eq 10, we have

$$\partial_x (I_A B_0 \hat{A} G_{IB})l_0 = 1_B D_B^{-1}$$

We now use the chain rule, the derivative $\partial_x G_{IB}l_0 = G_{IB}l_0 B_0 \hat{A} G_{IB}$ and $I_A B_0 \hat{A} G_{IB} = 1_B$ from the conservation of probability (Appendix A) to rewrite eq D1 as

$$\langle \tau_{\hat{A} \to B} \rangle = [1_B \partial_x (\hat{B}_0 G_{IB})l_0 + 1_B B_0 \hat{A} G_{IB}l_0 \partial_x G_{IB}l_0]P_0(0)$$

$$= [1_B \partial_x (\hat{B}_0 G_{IB})l_0 + 1_B \partial_x (\hat{B}_0 G_{IB})l_0 G_{IB}l_0]P_0(0)$$

$$= 1_B D_B^{-1} G_{IB}l_0 P_0(0)$$

(D2)

in agreement with eq 15, where $1_B D_B^{-1} = 1_B D_B^{-1} + 1_B D_B^{-1} G_{IB} B_{IB}$.

APPENDIX E. INITIAL CONDITION IN B^I TO REPRODUCE EXACT WAITING TIME FOR AN ARBITRARY INITIAL CONDITION IN $I \cup B$

Following eq 14, the exact waiting time for any initial condition in $I \cup B$ reads

$$\langle \tau_{\hat{A} \to J} \rangle \equiv [I_A]^{-1}D_I - K_{II} - K_{IB} \quad [I_B]^{-1}D_B - K_{BI} - K_{BB}]^{-1}P_I(0)$$

(E1)

which is identical to eq 14, except that, now, $P_I(0) \neq 0_Y$. Recall that the exact $P_I(0) = 0_Y$ result (eq 15 or eq 20) can be written as $\langle \tau_{\hat{A} \to B} \rangle = 1_B[D_B^{-1}]^{-1}G_{IB}P_0(0)$. Rearranging eq E1 gives the analogous result

$$\langle \tau_{\hat{A} \to J} \rangle = 1_B[D_B^{-1}]^{-1}G_{IB}P_0(0) + B_{BI}G_{IB}P_I(0) + 1_B D_B^{-1} G_{IB}P_I(0)$$

(E2)

with

$$P_I(0) = P_B(0) + [K_{BI} + [G_{IB}^{-1}]^{-1}D_B(x_B \otimes 1_I)]^{-1}D_B^{-1} G_{IB} P_I(0)$$

where x_B is any vector that satisfies $1_B x_B = 1$. This freedom is not surprising, because this term accounts for all paths that decay to \hat{A} without passing through B. Therefore, we see that the exact waiting time for arbitrary initial conditions in $I \cup B$ can be recovered in the GT-renormalized Markov chain with an initial condition $P_B(0) = 1_B$. Requiring $1_B P_0(0) = 1$ for a probability distribution in B^I yields...
\begin{align*}
1_B P_0(t) &= 1_B P_0(t) + [1_B B_{II} G_I + (1_B (G_I^{-1} - D_I \delta_I) G_I) 1_B D_I^* G_I] P_0(t) = 1 \\
\Rightarrow 1_B (G_I^{-1} - D_I \delta_I) z_{2g} &= 1 - 1_B P_0(t) - 1_B B_{II} G_I P_0(t) \\
&= 1_B D_I^* G_I P_0(t)
\end{align*}
(E3)

As \(1_B z_{2g} = 1, z_{2g}\) can be thought of as a probability distribution in \(B^I\), meaning that \(1_B (G_I^{-1} - D_I \delta_I)\) is the flux to \(A\) for \(P_{b'} = z_{2g}\) by comparison with the evolution defined by eq 19. Similarly, the denominator on the right can be interpreted as the waiting time for escape to \(A\) for paths that never pass through \(B^I\), while the numerator is the corresponding total probability for such paths.

Finally, \(B_{II} G_I P_0(t)\) is probability mass from \(I\) that passes through \(B\) before reaching \(A\), the product of the compound probability \(G_I P_0(t)\) of all paths that remain in \(I\) multiplied by the branching probability \(B_{II} D_I^*\) into \(B\). The exact GT result for the waiting time shows that the initial distribution in \(B^I\) is \(P_0(t)\) plus a renormalized branching probability for probability in \(I\), namely with effective rates \(K_{II} \rightarrow K_{II} + (G_I^{-1} D_I^* P_{2g} \otimes 1_I\), which accounts for the flux into \(A\) from paths that do not enter \(B^I\).

APPENDIX F. DERIVATION OF STEADY-STATE TRANSITION RATE AND WAITING TIME

The steady-state approximation assumes that the intervening region is in local equilibrium with \(P_e = 0\) on the time scale of transitions between \(A, B\). This assumption is reasonable when \(A, B\) are sufficiently metastable. The approximation of a steady state in \(I\) yields the equality

\[
D_I^* P_I = [1_I - B_{II} 1_I^{-1} [B_{II} D_I^* P_A + B_{II} D_B^* P_B]]
\]
(F1)

In addition, the original SS DPS derivation assumes that both \(A, B\) are populated with local restricted equilibrium distributions

\[
P_A(t) \rightarrow \hat{\pi}_A P_A(t), \quad P_B(t) \rightarrow \hat{\pi}_B P_B(t)
\]
(F2)

Therefore, we obtain a reduced evolution equation for \(P_A\) (with the obvious analogue for \(B\))

\[
\dot{P}_A = 1_A [B_{II} P_A + 1_B B_{II} D_B^* \hat{\pi}_B P_B + 1_B B_{II} D_B^* P_B] \\
\Rightarrow \dot{P}_A = 1_A [B_{II} 1_A^{-1} D_B^* \pi_B P_B + 1_B B_{II} D_B^* P_B]
\]
(F3)

where the branching probabilities \(B_{II}^X \) are defined in eq 5. The steady-state \(A \rightarrow B\) rate into \(A\) from \(B\) can be read directly from eq F3), giving

\[
k_{SS}^{A \rightarrow B} = 1_B B_{II} D_B^* \hat{\pi}_B - C_{II} D_B^* \hat{\pi}_B
\]
(F4)

The last equality uses the committor definition given in eq 6 to recover eq 36.

As noted in section IV(D), the above expression for the rate associates a waiting time for each path that only accounts for the escape time from the initial \(B\) minimum.

APPENDIX G. FIRST-STEP ANALYSIS FOR EQUIVALENCE OF Eqs 37 AND 39

In the state space after the removal of all \(I\) minima and \(b' \neq b\) in \(B\) the renormalized waiting time and branching probabilities, denoted \(r_{ab}, P_{ab}^F, P_{ab}^I\) in previous work, correspond to steps from \(b\) to any \(a \in A\) or back to \(b\). \(\tau_{ab}\) is then obtained as

\[
\tau_{ab} = \tau_{ab}^F (1 + 2P_{ab}^F + 3(P_{ab}^F)^2 + \ldots)
\]
\[
= \tau_{ab}^F \frac{1}{(1 - P_{ab}^F)^2}
\]
\[
= \frac{\tau_{ab}^F}{P_{ab}^F}
\]
(G1)

From the first-step relation, adding and subtracting \(\tau_{ab}\) on the right, we find

\[
\tau_{ab} = \tau_{ab}^F + \sum_{b' \in B} [B_{ab}^F - \tau_{ab}^F] + \sum_{b' \in B} [B_{ab}^F - \tau_{ab}^F] \tau_{ab}\]

so

\[
C_{ab} \tau_{ab} = \tau_{ab}^F + \sum_{b' \in B} C_{ab} \tau_{ab}^F - \tau_{ab}^F
\]
(G2)

Hence, \(\tau_{ab} = \tau_{ab}^F / C_{ab}\) if \(\tau_{ab}\) is the same for all \(b\), and the two rate formulations in eqs 37 and 39 agree.

For completeness, we now demonstrate how the first-step relation is encoded in the matrix formulation that is the principal representation of the present contribution. With \(\tau_{ab} = [1_B (D^I_B)^{-1} G_B]_{ab}\) we have

\[
\sum_{b' \in B} \tau_{ab}^F B_{ab}^F_{b''} = [1_B (D^I_B)^{-1} G_B]_{ab} [1_B (D^I_B)^{-1} (G_B - 1_B)]_{ab} \\
= [1_B (D^I_B)^{-1} G_B]_{ab} - [1_B (D^I_B)^{-1}]_{ab} = \tau_{ab} - \tau_{ab}^F
\]
(as required)
(G3)

APPENDIX H. SENSITIVITY TO DIRECT TRANSITIONS

H-1. Sensitivity to Direct \(P \rightarrow P\) Transitions

For the case \((l, m) \in (\mathcal{P}, \mathcal{P})\), we must consider sensitivity to both the \(l \leftrightarrow m\) perturbation and the \(m \leftrightarrow m\) perturbation. If we define the “one-sided” difference operator \(\delta_{pp'}^{m-1}\) as only accounting for the \(l \leftrightarrow m\) perturbation, from detailed balance, we can write

\[
\delta_{pp'}^{m-1} C_{SS} = \delta_{pp'}^{m} C_{SS} + \phi_{pp'}^{m-1} + \delta_{pp'}^{m-1} C_{SS} = \frac{1}{k_{SS}^{S}} \delta_{pp'}^{m-1} C_{SS} \]
(H1)

The rate matrix modification from eq S3 reads

\[
[\delta_{pp'}^{m} \mathbf{K}_{\mathcal{P}}]_{ij} = k_{ij} (\delta_{pp'}^{m} - \delta_{jm}^{m} - \delta_{jm}^{m-1}) \]

with all other modifications are zero. This gives branching probability modifications of general form

\[
[\delta_{pp'}^{m-1} \mathbf{B}_{\mathcal{P}}^{\mathcal{P}}]_{ij} = \delta_{pp'}^{m-1} B_{ij}^{\mathcal{P}} + \phi_{pp'}^{m-1} B_{ij}^{\mathcal{P}} - \delta_{pp'}^{m-1} B_{ij}^{\mathcal{P}} \]
(H3)

Therefore,

\[
[\delta_{pp'}^{m-1} \mathbf{B}_{\mathcal{P}}^{\mathcal{P}}]_{ij} = k_{ij} (\delta_{pp'}^{m} - \delta_{jm}^{m} + \delta_{jm}^{m-1}) \]

\[
[\delta_{pp'}^{m-1} \mathbf{B}_{\mathcal{P}}^{\mathcal{P}}]_{ij} = -k_{ij} (\delta_{pp'}^{m} - \delta_{jm}^{m} - \delta_{jm}^{m-1}) \]
(HS)
We have the rate and branching states.

The "one-sided" sensitivity of the total branching probability can then be written

\[
\delta_{p_{21}} \rightarrow A = \frac{1}{\partial_{p_{21}} B_{p_{21}}^A \delta_{p_{21}}} + \frac{1}{\partial_{p_{21}} B_{p_{21}}^A \delta_{p_{21}}} \begin{bmatrix} D_{p_{21}} \cdot x \end{bmatrix}
\]

where the last in equality uses eq 45, which implies that \(y B_{p_{21}}^A + 1 A B_{p_{21}}^A = y \).

H-2. Sensitivity to Direct \(B \rightarrow P \) Transitions

For \((l, m) \in (B, P)\), we have the rate and branching probability matrix modifications,

\[
\begin{align*}
\delta_{p_{21}}^{m,n} & = k_{l}^{U} \left(\left(y_{m} - \left[y B_{p_{21}}^A \right] \right) \left[D_{p_{21}} \cdot x \right] \right), \\
\delta_{p_{21}}^{m,n} & = k_{l}^{U} \left(\left(y_{m} - \left[y_{l} B_{p_{21}}^A \right] \right) \left[D_{p_{21}} \cdot x \right] \right),
\end{align*}
\]

H-3. Sensitivity to Direct \(P \rightarrow A \) Transitions

For \((l, m) \in (P, A)\), we have the rate matrix modifications

\[
\begin{align*}
\delta_{p_{21}}^{m,n} & = k_{l}^{U} \left(\left(y_{m} - \left[y B_{p_{21}}^A \right] \right) \left[D_{p_{21}} \cdot x \right] \right), \\
\delta_{p_{21}}^{m,n} & = k_{l}^{U} \left(\left(y_{m} - \left[y_{l} B_{p_{21}}^A \right] \right) \left[D_{p_{21}} \cdot x \right] \right),
\end{align*}
\]

giving, in turn,

\[
\begin{align*}
\delta_{p_{21}}^{m,n} & = k_{l}^{U} \left(\left(y_{m} - \left[y B_{p_{21}}^A \right] \right) \left[D_{p_{21}} \cdot x \right] \right), \\
\delta_{p_{21}}^{m,n} & = k_{l}^{U} \left(\left(y_{m} - \left[y_{l} B_{p_{21}}^A \right] \right) \left[D_{p_{21}} \cdot x \right] \right), \\
\delta_{p_{21}}^{m,n} & = 0
\end{align*}
\]

and, thus, the final sensitivity, with \(l \in P, n, m \in A \), of

\[
\delta_{p_{21}}^{m,n} = k_{l}^{U} \left(\left(y_{m} - \left[y_{l} \right] \right) \left[D_{p_{21}} \cdot x \right] \right),
\]

which we note is independent of \(m \in A \), as expected, because of the form of the committor vector \(C_{p_{21}} \) defined in eq 6, with a sum over all \(A \) states.

Author

David J. Wales — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; orcid.org/0000-0002-3555-6645

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jctc.9b01121

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

D.J.W. gratefully acknowledges financial support from the Engineering and Physical Sciences Research Council. T.D.S. and D.J.W. would like to thank the Institute of Pure and Applied Mathematics at the University of California, Los Angeles for providing a stimulating environment during their long program on "Complex Processes in High Dimensional Energy Landscapes".

REFERENCES

(38) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything you wanted to know about Markov State Models but were afraid to ask. Methods 2010, 52, 99−105.

(57) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything you wanted to know about Markov State Models but were afraid to ask. Methods 2010, 52, 99−105.

(70) Wales, D. J. The Cambridge Landscapes Database, 1999; available via the Internet at: www-wales.ch.cam.ac.uk/CCD.html.

