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ABSTRACT: Kinetic transition networks (KTNs) of local
minima and transition states are able to capture the dynamics of
numerous systems in chemistry, biology, and materials science.
However, extracting observables is numerically challenging for
large networks and generally will be sensitive to additional
computational discovery. To have any measure of convergence
for observables, these sensitivities must be regularly calculated. We
present a matrix formulation of the discrete path sampling
framework for KTNs, deriving expressions for branching
probabilities, transition rates, and waiting times. Using the concept of the quasi-stationary distribution, a clear hierarchy of
expressions for network observables is established, from exact results to steady-state approximations. We use these results in
combination with the graph transformation method to derive the sensitivity, with respect to perturbations of the known KTN, giving
explicit terms for the pairwise sensitivity and discussing the pathwise sensitivity. These results provide guidelines for converging the
network, with respect to additional sampling, focusing on the estimates obtained for the overall rate coefficients between product and
reactant states. We demonstrate this procedure for transitions in the double-funnel landscape of the 38-atom Lennard-Jones cluster.

I. INTRODUCTION

The dynamics of a condensed-phase system can often be
represented as transitions between local minima in the
potential energy landscape. When local minima are sufficiently
deep that the system thermalizes before escape, interminima
transitions are Markovian,1 permitting a linear master equation
representation of the dynamics. Transition rates k = κω0 exp-
(−βΔF) are decomposed to a dynamical prefactor κω0 and a
free-energy barrier ΔF = Fji

† − Fi between a given local
minimum i and the local free-energy maximum on the j← i
minimum free-energy path, known as the transition state.2−4

The simplest transition-state theory assumes that trajectories
that pass the transition state do not recross and free energies
can be calculated in the harmonic approximation. The set of all
minima and transition states, characterized by their free
energies, form a kinetic transition network (KTN).5−8

As the escape time from a minimum i scales as exp(β(minj
Fji
† − Fi)), construction and analysis of a KTN can, in principle,

be much more efficient than direct molecular dynamics
simulation. In practice, the number of local minima is
exponential in system size,9,10 meaning that it may be
computationally challenging to sample the thermodynamically
important minima and numerically challenging to reliably
extract observables from the landscape.11

The variety of strategies to build KTNs can be considered a
subclass of rare event simulation techniques that focus on
identifying transition states. Starting with some set of minima
produced from experimental insight or global optimiza-

tion,12−14 we can search for transition pathways from each
minimum, using single-ended methods, or seek connections
between two minima, using double-ended methods.
For the purposes of KTN construction, double-ended

searches are typically static methods that find pathways by
minimizing a continuous or discrete chain of configurations
connecting two specified states. Popular approaches include
the string,15 nudged elastic band (NEB),16,17 and doubly
nudged elastic band (DNEB)18,19 methods. The DNEB
approach has been extended to treat distant initial and final
states, where many intermediate minima may be involved,
resulting in pathways including multiple transition states. Here,
we employ a missing connection algorithm,20 along with
hybrid eigenvector-following to refine the transition states
accurately.21−24 There are also dynamical double-ended
methods, such as milestoning,25 transition-path sampling,26,27

and forward flux sampling,28 among others.28−30

Single-ended search methods can be roughly classified into
unbiased dynamical approaches, such as temperature-accel-
erated dynamics31−33 and parallel replica dynamics with state
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recognition,34,35 potential biasing dynamical approaches, such
as hyperdynamics36 and metadynamics,37 and geometry
optimization methods such as hybrid eigenvector-following
(the dimer method)21−24 and the closely related activation−
relaxation technique,24,38,39 which use curvature information to
find transition states directly. In dynamical single-ended
methods, transition rates can be estimated directly if the
process of interest can actually be simulated with meaningful
statistics.40−43 Some further discussion of these methods can
be found in a recent review.44

For any chosen construction method, the resulting KTN will
always be finite, meaning that predictions will change when
additional computational effort is expended to grow the
network. This problem is well-recognized;32,33,45,46 previous
work has focused on single-ended searches using high-
temperature molecular dynamics, as the Poisson distribution
of rare event escape times allows the benefit of additional
computational effort to be quantified. Recently, one of the
current authors has used the Poisson law to derive a
monotonically increasing Bayesian estimator of statewise
sampling completeness.33 This approach was combined with
a KTN to determine where additional sampling should be
performed to maximize the predictive time horizon as
efficiently as possible, yielding a autonomous global sampling
strategy.
Single-ended search strategies are particularly useful for

exploring complex but locally single funnel free-energy
landscapes,47 such as those in defect transport,33 where the
modeling goal is to build a KTN to study the long-time
evolution.
However, many problems in materials science, protein

folding, and numerous other fields have competing global
structures, giving rise to multifunnel potential and free-energy
landscapes.47,48 In this setting, the modeling goal is to build a
KTN to capture the kinetics, via multiple complex pathways,
between these potentially distant funnels. While single-ended
search methods may eventually find these connections, double-
ended strategies such as DNEB are, in practice, much more
efficient, as putative pathways between basins can be rapidly
found, then additional sampling performed to refine and
explore around the key paths. The discrete path sampling
(DPS) framework8,49,50 can exploit both single- and double-
ended methods to expand a KTN. Observables, such as
average traversal times or effective transition rates, are then
expressed as averages over all possible pathways. To simplify
the resulting expressions local equilibrium is usually assumed
for the reactants;8,49,50 in the present contribution, we will
compare this approach with a direct treatment of the large,
sparse matrices that encode the underlying master equa-
tion.51,52 As we detail below, these matrices regularly suffer
from severe conditioning issues, because of the exponential
sensitivity of transition rates, motivating the development of
the graph transformation technique53,54 to iteratively remove
states, producing lower rank and better conditioned KTN
matrices with identical observables. Typically, the renormaliza-
tion is continued until the desired observables can be simply
extracted. While numerically stable, this complete renormaliza-
tion is undesirable for sensitivity analysis, because we wish to
specify which (pairs of) minima should be subject to further
sampling in order to converge the observable of interest.
In this contribution, we unify the various approaches to

calculating KTN observables and look in detail at their
sensitivity to additional sampling effort, in the form of double-

ended transition pathway searches. In section II, we define the
terminology used to describe a KTN and introduce the master
equation, before introducing the graph transformation method
in section III. We then derive exact results for KTN
observables, as a function of transition matrices before and
after an arbitrarily complete graph transformation in section
IV. Invoking the concept of the quasi-stationary distribu-
tion,1,51,52 we find a clear hierarchy of approximations and
provide a precise equivalence to the various results of DPS.
Much of the work is assigned to appendices for clarity of
exposition.
In section V, we show how the graph transformation method

is used to produce a partially renormalized, well-conditioned
KTN, which retains the ensemble of found reaction pathways,
and we identify the total branching probability (or the sum of
all committor probabilities) as the observable that we use for
the sensitivity analysis. This analysis is presented in section VI,
with explicit expressions for changes in the total branching
probability of the renormalized KTN, following additional
connections found during a double-ended saddle search
between an arbitrary state pair. We show that the matrix of
all possible pairwise sensitivities can be rapidly calculated via
the solution of two linear problems involving the renormalized
KTN. The optimal deployment of sampling tasks using these
pairwise sampling tasks is discussed briefly in section VII, and
approximate confidence bounds on the resulting KTN
observables are analyzed in section VIII. Further development
of confidence bounds will be the subject of future work.
Finally, in section IX, we apply our framework to simulate
sampling the KTN of the 38-atom Lennard-Jones cluster,
which exhibits a double-funnel landscape, showing how our
observable converges.

II. KINETIC TRANSITION NETWORKS

A KTN is constructed from a set of metastable states and the
transition states or rates that connect them. The states are
considered sufficiently metastable that local equilibrium is
achieved before escape and thus the state-to-state dynamics are
Markovian,1 providing the master equation representation that
is used as the starting point for DPS.8,49,50 In this section, we
define our notation and introduce the master equation in terms
of large, typically sparse matrix products.
Consider a tripartition of the set of all minima =
∪ ∪ into two (possibly directly connected) regions

, containing N N, minima, respectively, and an
intervening region containing N minima. We assume that

and are metastable, a statement which will be made
precise when considering KTN observables. Without a loss of
generality, we focus on transitions from to , which we
denote as ← . Let  be the identity matrix in ×N N , i.e.,
of dimension equal to the number of minima in region , and

∈ 1 N , a row vector of ones of the same dimension. Before

reaching equilibrium, the probability density vector ∈ P
in a region ∈ { }, , evolves according to the master
equation3

∑̇ = − +
∈{ }

P D P K P
, , (1)

where ∈ × K is a (rectangular) matrix of all of the

minimum-to-minimum rates → , and ∈ ×D N is a
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diagonal matrix whose entries are the total escape rate from
each state in . The conservation of probability requires
∑ ̇

∈{ } 1 P, , = 0, for any probability density, which, in

turn, implies that

∑=
∈{ }

1 D 1 K
, , (2)

Assuming that a detailed balance holds, the probability
distribution P will relax exponentially to the equilibrium
occupation probabilities π for all the component minima. It is
useful to define the normalized restricted equilibrium
distributions π π π̂ = 1/ , such that π ̂ =1 1. Hence, a
component, such as π̂b, is the equilibrium conditional
probability that the system is associated with local minimum
b, given that we are in region . These conditional
probabilities appear in all of the rate constant formulations
previously derived in the DPS framework,8,49,50,53,54 as
discussed below.
We now introduce the branching probability B (Bij = P(j→

i|j)) that the next step of a Markov jump process will be j→ i.
The branching probability plays a key role in DPS8,49,50 and
kinetic Monte Carlo simulations.55 In terms of the transition
rates defined above, branching probability matrices are given
by ≡ −B K D 1. Because of the (assumed) Markovinity of
the state-to-state dynamics, just as [ ]B ij gives the probability

of reaching ∈i from ∈j in one jump, the sum

∑ [ ] [ ] = [ ]B B B
l

il lj ij
2

(3)

gives the probability of reaching i from j in exactly two jumps
within . More generally, we consider the sum of all possible
path probabilities, conditional on not leaving . Making the
eigendecomposition λ= ∑ ⊗B v vl l l

R
l
L, it is straightfor-

ward to show the total probability of all → paths (with
recrossings), which reads

∑ ∑
λ

≡ =
⊗
−

= [ − ]
=

∞
−G B

v v
B

1n

n

l

l
R

l
L

l0

1

(4)

where we define the matrix G to simplify later expressions and
⊗ is the diadic (outer) product; for two vectors a and b, the
outer product is the matrix a ⊗ b with elements [a ⊗ b]ij =
aibj. This inversion is nonsingular (λl < 1) when escape from
is possible.
The Green’s matrices (eq 4) are very useful when deriving

KTN observables for transitions between and ; in
particular, the Green’s matrix G provides a compact manner

to write the branching probability B of leaving
∈ { }, in one jump, executing a path of arbitrary

(possibly zero) length within and ending in ∈ { }, .
This result reads

≡ +B B B G B (5)

where B allows for the possibility of a direct ← jump,
bypassing . As in previous work,8 we distinguish quantities
that implicitly account for intervening minima by the
superscript , which immediately defines another key quantity
in DPS, the committor vector:

= ∈ C 1 B N
(6)

with component [ ] ≡ CC b b being the probability of leaving
state ∈b in the first jump, then reaching before .
The compound branching probabilities B and B will

play a central role when deriving the main KTN observables in
this work. Indeed, the total committor probability, 1 C , will
be the objective function for our convergence analysis.
However, we will see, in later sections, that evaluation of the
Green’s matrices G routinely suffer from severe conditioning
issues, because of the exponential sensitivity of transition
rates,56 meaning that direct solution is numerically unstable.
To overcome these issues, we use the graph transformation
(GT) method,8,53,54,57 detailed in the next section.

III. THE GRAPH TRANSFORMATION METHOD
The graph transformation (GT) method8,53,54,57 is a
deterministic technique to remove a state ∈l , giving a
new state space \l with renormalized branching probabilities
and escape times. If the current branching probability matrix is
B , where, by definition, ∑ [ ] =B 1i il for all ∈l , the GT
procedure to remove a state l to give \l is8

[ ] → [ ] = [ ] +
[ ] [ ]

− [ ]

[ ] → [ ] = [ ] +
[ ] [ ]

− [ ]

\

−
\

− −
−

B B B
B B

B

D D D
D B

B

1

1

ij l ij ij
il lj

ll

jj l jj jj
ll lj

ll

1 1 1
1

(7)

While self-transitions l → l are initially zero (i.e., we start with
[ ] =B 0ll ), such “self-transition” terms emerge after repeated
application of the GT renormalization, representing the
branching probability to paths solely on removed states that
start and end on a state l. Including degenerate rearrange-
ments48,58 rescales the initial branching probabilities and
waiting times, leaving the ratios unchanged.8 The original GT
procedure excluded self-transitions from the possible
events.53,54 The branching probabilities and waiting times
then scale by a common factor, and the expected waiting time
for escape is unaffected.8 However, when self-transitions are
included in the events, we obtain a direct connection to
committor probabilities.8

The GT method was specifically designed8,53,54 as an
alternative to matrix representations of Markov chain
observables to overcome the numerical conditioning issues
described above. In particular, when [ ]B ll becomes very close
to unity, evaluation of the denominator − [ ]B1 ll induces
floating point error. The GT method overcomes this problem
by exploiting a state-by-state removal scheme, replacing

− [ ]B1 ll with the equivalent term ∑ [ ]≠ Bi l il, which does

not suffer from these issues. The GT approach has indeed been
shown to have far superior numerical stability to direct linear
algebra solutions across a wide range of systems,59 and has
been exploited to overcome trapping in kinetic Monte Carlo
simulations.60

A matrix generalization of the GT method has recently been
analyzed,57 where blocks of states are removed simultaneously
instead of individually. In fact, the renormalization procedure
can preserve branching probabilities and waiting times for the
removal of any subsets of states in any sequence. Specifically,
suppose that we start with states ∪ and wish to remove
all states belonging to . Equation 5 gives the sum of the
products of branching probabilities for all paths starting at z1,
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ending at z2, with ∈z z,2 1 and any number of steps in the
region between the end points:

[ ] ≡ [ + ]B B B G Bz z z z2 1 2 1 (8)

Therefore, we can conserve the probability associated with
these paths using the renormalized branching probability
matrix B with the elements defined above in ×N N .
The expected waiting time for a single-step transition

between z1 and z2 can be obtained by summing the waiting
time [ ]−D 1

zz or [ ]−D 1
ii for each state ∈z or ∈i along a

given path, then performing a weighted average over all paths
using the product of branching probabilities. Here, we are
assuming Markovian transitions within the KTN, so that the
expected time to traverse each path is simply the sum of the
expected escape times for each state. To achieve this averaging,
we define B as follows:8,53,54

ζ̃ ≡ ̃ ≡ [ − ̃ ]− −B B D G Bexp( ),1 1
(9)

where ∈ { }, , , which weights each step by the correct
waiting time when taking a derivative with respect to ζ and
then setting ζ = 0. Since branching probabilities must sum to
one ov e r a l l p o s s i b l e c onne c t i on s , we ha v e

= +1 1 B 1 B , so that = −1 B 1 B( ) and
hence =1 1 B G . In Appendix A, we provide a summary
of other useful relations between these quantities.
We can use these identities to simplify the expression for the

expected waiting time for a transition from any state ∈z to
any another state in via an arbitrary number of steps
between states in . This waiting time becomes the expected
escape time from z when the states are renormalized away
and is given by the z-component of

ζ

ζ

[ ] ≡ ∂
∂

̃ |

= ∂
∂

̃ + ̃ ̃ ̃ |

= +

ζ

ζ

−
=

=

− −

1 D 1 B

1 B B G B

1 D 1 D G B

( )

( )

1
0

0

1 1
(10)

(see Appendix B for a full derivation), which defines the
renormalized waiting times [ ]−1 D 1. We note that

=1 B 1 , so the sum of path weights in question for
any component of is unity. Hence, the expected waiting
times associated with direct transitions between states when
the states are removed are conserved if we replace the
original values by the diagonal elements of [ ]−D 1. The
renormalization conserves the path probabilities as branching
ratios between all states exactly, but not individual first
passage times. As for the previous derivation of state-by-state
renormalization, the sum over end points in conserves the
escape time.
The renormalization only changes values for states that

are first or second neighbors of states, but the formulas can
be applied for all . We will also obtain the same results if we
remove sets of states in any order, so long as the final state
space is the same. In particular, we recover the results in eq 7 if
we remove a single state. Furthermore, we can partition
arbitrarily, for example, into product and reactant portions,

which we indicate by = ∪ . We then obtain
renormalized branching probabilities and escape times:

→ =

[ ]

[ ]

[ ]

→ [ ] =
[ ]

[ ]

−

−

−

−
−

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

B B B

B B B

B B B

B
B B

B B

1 D

1 D

1 D

1 D
1 D

1 D

1

1

1

1
1

1

(11)

The components of [ ]−1 D 1 correspond to the renormalized

escape times τb in previous work;8 we will use them again in
section IV(D).
As we shall see, the flexibility to remove blocks of states and

conserve the branching probabilities and waiting times of
interest is useful for analysis but suffers from the same
numerical issues as those that the state-by-state GT method
overcomes.
In the next section, we derive some formally exact results

from the full Markov chain (eq 1), then show how these may
be generalized to produce expressions for the waiting time and
branching probabilities found in previous work. The extended
GT results described above will then be used to study how
reaction rates emerge in a KTN. We note here that the
renormalization procedure conserves the escape time for a
transition within the remaining state space, while approx-
imations involving steady-state assumptions for states do
not. Nevertheless, the steady-state approximation can be useful
for analysis: it has been exploited in DPS,49,50 and the same
formulas result from a coarse-graining approach.61

IV. EXACT OBSERVABLES FOR A KTN
When and are metastable, ↔ transitions will be
rare and typically followed by long periods in the product
region. Therefore, it is meaningful to ask for the expected
waiting time to reach, say, , given that we prepare the initial
distribution in , i.e., =P 0(0) and =P 0(0) .
The ← waiting time can be evaluated exactly by

studying an artificial system where all transitions out of are
set to zero, i.e., =K 0. While this system then clearly
violates detailed balance (as all trajectories will eventually end
in for a connected network), the dynamics before reaching

are unperturbed. In this limit, the dynamics in ∪
follow a master equation analogous to eq 1:

̇

̇
=

−

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
P

P

K D K

K K D

P

P (12)

where all quantities are exactly as defined in eq 1, meaning that
transitions to are encoded only in the diagonal matrices D
and D . With no further approximations, it is possible to
evaluate the expected waiting time to reach conditional on
starting in analytically, i.e., with initial conditions P (0) such
that =1 P (0) 0, =1 P (0) 0, and =1 P (0) 1. The
probability density for the waiting time τ is simply the
probability flux out of ∪ :

τ ∈ [ + ] = − ̇ + ̇t t t t1 P 1 PP( , d ) ( ) d (13)
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The integral of this density is the total change of probability in
∪ in the limit t→∞, which is clearly unity. Therefore, we

can express the expected waiting time as33

∫
∫

τ
τ

τ
⟨ * ⟩ ≡

∈ [ + ]

∈ [ + ]

=
− −

− −

←

∞

∞

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

tP t t t

P t t t

1

1

D K K

K D K

0

P

( , d )

( , d )

(0)

0

0

T 1

(14)

where the second line arrives by considering the evolution
equation described by eq 12. We derive this result in Appendix
C, verifying that the denominator of the first line above is −1,
and then solve the matrix inversion analytically to give

τ⟨ * ⟩ = [ + ]

= [ ]

←
− −

−

1 D G B 1 D G P

1 D G P

(0)

(0)

1 1

1
(15)

where the Green’s matrix G is defined as

= [ − ]−G B 1
(16)

i.e., the Green’s matrix corresponding to the compound
branching probability of all possible nonreactive paths starting
and ending in without reaching . The matrix B
corresponds to the definition given in eq 5 and motivates the
notation employed for G .
IV(A). Exact Waiting Time from Pathwise Averages.

To make a connection with previous work on KTN
observables, we wish to interpret the matrix expression defined
by eq 15 in terms of weighted averages over all possible paths
connecting to . These path weights form the starting point
for all of the mean first passage time and rate constant
derivations in DPS theory, based on the graph transformation
renormalization approach.8,53,54 In particular, we previously
wrote the product of branching probabilities for any discrete
path ξ as ξ.

54 Element b of the vector 1 B G is then
identified with the sum of path weights ξ over ∈a and

paths ξ ∈ a← b. Since [ ] ′G b b gives the sum of all probabilities
for paths starting at ∈b and ending in ′ ∈b without
reaching , and [ ] ′B ab is the probability of reaching ∈a
from b′ summed over all paths that do not return to , the
product is the sum of probabilities over all possible a← b
paths. Every element of this vector is unity: by conservation of
probability, = − = [ ]−1 B 1 1 B 1 G 1, giving

= [ ] =−1 B G 1 G G 11
(17)

which, in turn, implies that =C G P (0) 1 for any initial
condition. To obtain the expected waiting time, we follow the
procedure of section III, and, in Appendix D, we show that the
exact waiting time can be written as

τ
ζ

⟨ * ⟩ = ∂
∂

̃ ̃ |

= [ ]

ζ← =

−

1 B G P

1 D G P

( ) (0)

(0)

0

1
(18)

which connects the expected waiting time to the sums of path
weights. Here, we identify the components [ ]1 B G b with
the waiting times b in previous work.8

IV(B). Exact Waiting Time Using the GT Method. The
exact waiting time (see eq 15) can also be obtained using the
graph-transformed branching probabilities (eq 11) and escape
times section III, with =K 0, to form a reduced Markov

chain executing dynamics in a state space I the same size as
, which subsumes excursions into before eventual

absorption in . The superscript indicates that all the
minima have been renormalized away, as described above.
The transition rate matrix between renormalized states in
∈i j, I is given by =K B D , i.e., the branching

probability multiplied by the total escape rate. The absorbing
master equation (eq 12) in ∪ is then transformed to a
renormalized master equation in I evolving via −K D ;

using the definition of G in eq 16, the evolution equation for
tP ( )I becomes

̇ = −[ ]−t tP G D P( ) ( )1
I I (19)

Employing the same procedure as employed to derive the exact
waiting time (eq 14 in Appendix C), we can write the exact
waiting time of eq 19 as

τ⟨ * ⟩ = [ ]←
−1 D G P (0)1

I (20)

which is identical to the exact result of eq 15 for the full system
when =P P(0) (0)I , which is consistent with the definitions

in eq 11 and section III). The required initial condition in I

to reproduce the exact waiting time when ≠P 0(0) is given

in Appendix E. The notation I for the probabilities is used to
emphasize that, although eq 19 has exact escape statistics to ,
the GT procedure changes the nature of the remaining state
space. The exact waiting time of the full (or reduced) model is
the expected time spent in ∪ (or I) before reaching ,
which is clearly not equal to the expected time spent in .
Therefore, the state space I has the same rank as , but
evolves with branching probabilities and escape times that
account for all possible sojourns into . This distinction is
important when defining the metastability of and transition
rates ←k , as we see in the next section.

IV(C). Defining an Exact Transition Rate. The matrix
formalism allows us to define exact expressions for the
expected waiting time and branching probabilities for any
initial condition and energy landscape; the metastability of
and determine the utility, not the accuracy, of eqs 5 and 15.
However, the existence of a constant reaction rate ←k on a
suitable observation time scale is more subtle, because it is only
well-defined (i.e., has a constant value) when the decay into
follows single exponential kinetics. A weak condition for such
kinetics is metastability in ∪ ; a stronger condition is
metastability in alone.
In this section, we first derive the conditions for an exact

transition rate, dependent on metastability in ∪ , before
determining how this relates to previous work.
When ∪ is metastable, the rate matrix in eq 12 will

have a spectral gap. More precisely, if we write the
eigendecomposition of the rate matrix as
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single exponential decay from ∪ will emerge if the
ordered eigenvalues, numbering from zero, satisfy 0 < ν0 ≪ ν1
< ν2···, i.e., have a simple spectral gap ν0 ≪ ν1. To verify this
limit, we solve for the probability distribution in the eigenbasis.
Writing ∪ tP ( ) ≡ [ ]t tP P( ), ( ) , we find the multiexponential
solution

∑ ν= −∪ ∪t tP w P w( ) exp( )( (0))
l

l l
L

l
R

(22)

which will decay to a projection along the slowest eigenmode
w0
R on a time scale (ν1 − ν0)

−1. Therefore, the limiting
distribution in ∪ , conditional on not being absorbed, is

π= ≡ ̂
→∞

∪

∪ ∪ ∪
∪

t
t

P
1 P

w
1 w

lim
( )

( )t

R

R
0

0

QSD

(23)

where the superscript “QSD” signifies that we have defined the
quasi-stationary distribution π =∪ w RQSD

0 for ∪ . The QSD
is defined as the limiting distribution in a region with
absorbing boundaries conditional on not being absorbed,
which is a natural and useful generalization of the local
equilibrium distribution for metastable states.1,51 Importantly,
if prepared in the QSD, basin escape statistics are single
exponential, as we demonstrate below. For any eigenspectrum,
i.e., any degree of metastability, any initial conditions will
decay to the QSD on a time scale (ν1 − ν0)

−1. The spectral gap
condition means that the escape time scale for the slowest
mode, ν0

−1, is much longer than the time required to establish
the relative probabilities corresponding to the QSD, namely,
(ν1 − ν0)

−1 When we have simple metastability, ν0 ≪ ν1, KTN
observables approach single exponential kinetics on this time
scale, giving an exact escape rate of

ν−
̇

= ≡ *
→∞

∪ ∪

∪ ∪
←

t
t

k
1 P
1 P

lim
( )
( )t

0
(24)

The exact waiting time (eq 15) retains dependence on the
initial conditions ∪P (0). Using the eigendecomposition

described in eq 21, we can rewrite the formula for τ⟨ * ⟩←
involving the inverse matrix obtained in Appendix C as

∑τ ν⟨ * ⟩ =← ∪
−

∪1 w w P( (0))
l

l l
R

l
L1

(25)

Note that the eigenvalues of the rate matrix M in eq 21 are ≤0,
and the minus sign is chosen so that νl ≥ 0. This sign cancels
the minus sign in the first line of eq C5 in Appendix C to give
eq 25). When ν0 ≪ ν1, the first term dominates and we can use
eq 23 to replace ∪1 w R

0

π

τ ν ν ν

ν ν

⟨ * ⟩ = +

= * ̂
+

←
−

∪ ∪

←

∪

∪k

w P 1 w

w P
w

( (0))( ) ( / )

1 (0)
( / )

L R

L

L QSD

0
1

0 0 0 1

0

0
0 1

(26)

which is the inverse rate multiplied by the ratio of projections
onto the slowest mode for the initial distribution and the QSD.
Hence, τ τ⟨ * ⟩ = * ≡ ⟨ * ⟩← ← ←k1/ ,QSD if we simply prepare

the system in the QSD, with π= ̂∪ ∪P (0) QSD .

Furthermore, when ∪ is very metastable, i.e., as the
decay rate to vanishes ( → →K K0, 0), the slowest
eigenvalue ν0 will also approach zero. In this limit, w0

R, and, by
definition, πQSD, will be proportional to the invariant local
equilibrium distribution of eq 12, which, before any GT
renormalization, is simply π ∪ . Since ̇ ∪ tP ( ) = ∪ tMP ( ) =

∪0 for any ∪ tP ( ), we also know that the corresponding left
eigenvector w0

L is proportional to ∪1 . The orthonormality
relation wp

Lwq
R = δpq provides the constants of proportionality as

π π= ∪ ∪w w/R L
0 0 a n d w L

0 = ∪ ∪1 1 w/ R
0 =

π∪ ∪1 1/ QSD. The limiting form for w0
L holds even when

the limiting form for πQSD is no longer the local equilibrium
distribution due a GT renormalization, a point we return to
below. The proportionality of w0

L to ∪1 is sufficient to give
τ⟨ * ⟩ → *← ←k1/ by substitution in eq 26, as expected for
single exponential decay.
The same result, again consistent with eq 24, is obtained by

calculating the expected waiting time from ∪ tP ( ) given by eq
22, given the system has not decayed to after a time t. This
waiting time, which corresponds to τ⟨ * ⟩←

,QSD defined above,
would typically be measured in the experiment. Using the
notation of eq 14 and multiexponential expansion (eq 22), we
find

∫
∫

τ
τ

τ
⟨ * ⟩ ≡

′ − ∈ [ ′ ′ + ′]

∈ [ ′ + ′]

= *

← →∞

∞

∞

←

t t P t t t

P t t t

k

lim
( ) ( , d )

( , d )

1

t

t

t

,QSD

(27)

meaning that we can identify τ⟨ * ⟩←
,QSD as the correct inverse

rate * ←k when decay to follows a simple exponential
relationship.
While the expressions described by eqs 24 and 27 are

formally exact, as discussed above, the rate matrix (see eq 12)
suffers from significant numerical conditioning issues, meaning
that, in practice, evaluation of * ←k is rarely possible.
To proceed, we apply an identical analysis to the graph-

transformed evolution of eq 19, which reduces ∪ to I ,
the set of renormalized minima, while retaining the exact
waiting time (see eq 20). As above, when I is metastable, the
rate matrix in eq 19 will have a spectral gap. The
eigendecomposition of the transformed rate matrix reads

∑ ν−[ ] = − ⊗−G D z z
l

l l
R

l
L1

(28)

and single exponential decay from I will again emerge if the
ordered eigenvalues satisfy 0 < ν0 ≪ ν1 < ν2 ... In this limit we
can identity the renormalized QSD, the limiting distribution in
, as

π
π

π= ≡ = ̂
→∞

t
t

P
1 P

z
1 z 1

lim
( )

( )t

R

R
0

0

QSD

QSD
QSDI

I

I

I

I

(29)

which gives a renormalized escape rate,

ν−
̇

= ≡ *
→∞

←
t
t

k
1 P
1 P

lim
( )
( )t

0
,I

I (30)
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To compare * ←k , to * ←k , the exact waiting time (eq 20)
can be written in a form closely resembling eq 25:

∑τ ν⟨ * ⟩ =←
−1 z z P( ) ( (0))

l
l l

R
l
L1

I

(31)

which, again, will be dominated by the first term when I is
metastable, giving

π
τ ν ν⟨ * ⟩ =

* ̂
+←

←k

z P
z

1 (0)
( / )

L

L QSD,
0

0
0 1

I

I (32)

In the highly metastable limit, when the probability flux out of
I vanishes, we again have π→z 1 1/( )L

0
QSD

I and, thus,

τ⟨ * ⟩ → *← ←k1/ , , meaning that * ←k , = * ←k .

In this limit, π π→QSD
I I , the invariant distribution of the

transformed rate (eq 19) when decay to is vanishing.
Importantly, π I is not equal to π , which is the Boltzmann
distribution in ; this observation will become relevant when
comparing the exact rate to previous approximations.
The correspondence between the QSD rate * ←k (eq 24)

and the transformed QSD rate * ←k , (eq 30) also can be
obtained as for eq 27 by calculating the expected waiting time,
conditional on not decaying to ,

τ⟨ * ⟩ ≡
[ ]

=
*← →∞

−

←

t
t k

1 D G P
1 P

lim
( )

( )
1

t

,QSD
1

,

I

I (33)

Comparing the two equivalent exact results for the expected
waiting time, we see that the transformed QSD rate * ←k ,

(which we can calculate) and the exact QSD rate * ←k (which
is typically impossible to calculate) are equal in the metastable
limit. Hence, * ←k , can be considered an exact rate in the vast
majority of cases, since the GT transformation is typically
required only to calculate KTN observables in the highly
metastable (rare event) limit, where we have demonstrated
exponentially accurate correspondence between the GT QSD
rate * ←k , and the formally exact, but typically incalculable,

QSD transition rate * ←k . We also show in the next section
that it is only in this limit, when these rates agree with the
transition rate defined as the exact reference in previous work,
that they also agree with each other.
To facilitate the comparison to previous results for the

transition rate, we end this section by deriving an equivalent
expression for the transformed QSD rate (see eq 30). As
discussed above, the QSD projects * ←k , from the transformed
rate matrix (eq 19). Substituting for ̇ tP ( )I in this equation

and using π QSD
I for tP ( )I in the numerator and denominator

of eq 30 gives

π
π

* =
[ ]

←

−

k
1 G D

1
,

1 QSD

QSD

I

I (34)

By the conservation of branching probabilities and the
commit tor defin i t ion g iven in eq 6 , we have

= = [ ]−C 1 B 1 G 1 (see also eq 17 above). Therefore,
we can express the transformed QSD transition rate in the
suggestive form

π* = ̂←k C D, QSD
I (35)

Equation 35 is a very useful result; it provides an expression for
the KTN transition rate that is exact in the metastable limit
where a transition rate is well-defined, in a form that we can
relate to existing approximations, identified in previous work as

←kSS for steady state (SS)49 and ←kNSS for nonsteady state
(NSS),53 as detailed in the next section.
We note that the exact rate in ref 35 can be considered a

sum over the branching probabilities C for each reactive
trajectory in (i.e., those that reach before returning to )
weighted by the total escape rate and QSD weight for the
corresponding renormalized state in I . This formulation is
consistent with the probability distribution for reactive
trajectories.62,63 We also note the similarity to formulas
based on the flux over a dividing surface.62−65

IV(D). Comparison of the Exact Rate to Previous
Work. The steady-state approximation used in the original
DPS derivation49,50 assumes that the intervening region is at
steady state, ̇ =P 0, and that the , distributions are in
local equilibrium, π= ̂t tP ( ) P ( ) for = , . In
Appendix F, we show that the transition rate in this
approximation is given by

∑π
π

τ
= ̂ =

[ ] [ ̂ ]
←

∈

k C D
C

b

b b

b

SS

(36)

where the final expression uses τb = [ ]D1/ bb = [ ]−D 1
bb, the

expected waiting time for a transition out of minimum b,
demonstrating that ←kSS is precisely that which has been
derived in previous work.8 Through comparison with eq 35, we
see that the effect of the steady-state approximation is to
replace the GT renormalized escape times [ ]D1/ bb with

[ ]D1/ bb and the normalized QSD π ̂ QSD
I is replaced by the

local equilibrium occupation probability π ̂ . This result
amounts to assuming that traversal of the region is
instantaneous, and that the presence of nonzero escape rates
from affects the limiting distribution (which is the content
of the QSD). We expect that the latter assumption is
acceptable for sufficiently metastable basins, but this first
assumption is typically accurate only for simple landscapes.
The non-steady-state (NSS) formula for the transition rate

was derived in previous work by considering transitions within
the state space of ∪ after renormalizing away the
minima one by one.53 If we denote the corresponding rate
constants by an “ ” superscript, and treat all the transitions as
competing Poisson processes, then the expected waiting time
for a transition from b to ∪ is the renormalized value,
τ = +K K1/( )b b b , and we identify the committor

probability ( = +C K K K/( )b b b b ), which is obtained
from the renormalized branching probability.8,53 The required
rate is then τ=K C /b b b and we obtained a mean rate
constant by averaging over the local equilibrium distribution in
:8,53

∑ π
τ

=
[ ] [ ̂ ]

[ ]←
∈

k
C

b

b b

b

NSS

(37)
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τ[ ]b is component b of the vector of expected escape times
produced by GT. In section III, we showed that these expected
times can be written as τ = [ ]−1 D 1. The NSS escape rate
then reads

π= ̂←k C DNSS
(38)

which is the exact rate (eq 35) derived above with the
normalized QSD π ̂ QSD

I replaced by the local equilibrium

conditional probabilities π ̂ . Therefore, the NSS rate is a
significant improvement on the SS rate, because we only
assume that the local equilibrium π ̂ is a good approximation

to the transformed QSD π ̂ QSD
I . Here, we note that the matrix

D is always considered to be diagonal, with nonzero elements
defined in terms of the reciprocal waiting times from the
elements of the diagonal matrix that appear in 1 D .
We have seen, in the previous section, that, in the highly

metastable limit, the QSD (π π̂ → ̂QSD
I I) is the invariant

distribution for the transformed rate matrix (eq 19). When
there is no metastability in , we expect the approximation
π π̂ ≃ ̂I to be accurate; thus, ≃ *← ←k kNSS , , which, in turn,

will be equal to * ←k . However, if there is significant
metastability in , it is possible that π ̂ I could be different

from π ̂ , inducing error in ←kNSS .
Finally, we consider the rate obtained from the waiting time

b, which is calculated via graph transformation removal of
all minima and all other sources b′ ≠ b in , using local
equilibrium conditional occupation probabilities:8

∑ π
≡

[ ̂ ]
←

∈

kF

b

b

b (39)

Here, b is the waiting time for a transition from b to ,
including revisits to b, obtained from the renormalized
branching probabilities and escape time (see Appendix G).

←kNSS agrees with ←kF in eq 39 if the minima are in rapid
local equilibrium, compared to the time scale for transitions to
.7 Alternatively, considering the first-step relation,66 we can

prove that τ= C/b b b if b is the same for all b, and the
two rate formulations in eqs 37 and 39 are then equivalent (see
Appendix G).
In the present QSD framework, we can also show that eq 39

will agree with * ←k if the system relaxes to the highly

metastable limit of the QSD, π π̂ → ̂QSD
I I . Furthermore, if

this limiting distribution is given as π π̂ ≃ ̂I , then

≃← ←k kF NSS .
To see this correspondence, we use our exact waiting time

expression (eq 15) for an initial condition δ[ ] =′ ′P (0)b bb to
write

= [ [ ] ]−1 D Gb b
1

(40)

However, we know that the system will decay to the QSD for
any initial condition if the basin is metastable. In this limit, the
first term in the series for eq 31 gives

π→ * [ ]←
−k z 1( ) ( )b

L
b

QSD1
0 I (41)

In the highly metastable limit, π π→QSD
I I , we know

π→z 1 1/( )L
0 I , meaning that

→ * ⇒ → *←
−

← ←k k k( )b
F, 1 ,

(42)

In addition, using the exact waiting time expression described
by eq 20 for the full ∪ rate matrix (eq 12), analogous
manipulations yield → *← ←k kF , showing that, in the

metastable limit, ←kF , * ←k and * ←k , are all in agreement.
Hence, a well-defined transition rate emerges when we allow

the initial conditions to relax to the QSD, and all previous
results are recovered by first assuming that the QSD becomes
the local equilibrium distribution before any additional
assumptions. The difference between the QSD and the local
equilibrium view arises from the treatment of the region as
isolated, or with an absorbing boundary. In both cases, the
limiting distribution corresponds to the eigenvalue of the rate
matrix with the smallest magnitude (zero for local
equilibrium). The calculated rates will agree when the region
defined as reactants in the experiment is sufficiently metastable,
so that a local equilibrium setup can be achieved.
In previous work, we considered rates obtained from

averaging over kinetic Monte Carlo runs as the exact reference
for any given initial distribution, and referred to this rate as

←kkMC . However, since the exact rate can be calculated in other

ways, we prefer the notation * ←k , which is not associated
with any particular numerical approach. We finally note that an
absorbing boundary condition has previously been used in
combination with master equation dynamics to guide the
construction of a KTN by defining boundary states.67

V. PATH-BASED GT REGULARIZATION FOR
SENSITIVITY

To recover a numerically tractable system upon which
sensitivity analysis can be performed, we use the GT method
to remove states from which do not participate in or
significantly influence a given reaction pathway, leaving a
reduced set of states ⊂ with renormalized branching
probabilities. Therefore, we remove \ , i.e., those in but
not in ∪ ∪ through the GT method. All branching
probabilities and waiting times remain unchanged; the
branching probability matrix will reduce in rank, thus typically
becoming more amenable to linear algebra manipulations,
although it will generally become less sparse. The precise
definition of which states (local minima) to retain in is
flexible; indeed, the definition is free to change arbitrarily
throughout the computation. In previous applications that
remove states one by one, it proved much more efficient to
remove states with the fewest connections first.8,54 In the
present work, a natural choice is to select all states in that
either lie on or are directly connected to at least one known
reaction pathway. Following the notation convention for B ,
the GT procedure detailed in eq 11 yields renormalized
branching probability matrices → \B B , → \B B ,

→ \B B , and → \B B , where the latter matrix does
not change dimension, but the entries are renormalized.
With corresponding renormalizations for the waiting times

as in section III, which are defined as the inverse of the total
escape rate \D , we also obtain renormalized rate matrices

through ≡\ \ \K B D . The branching probability matrix
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from to can be exactly expressed in an identical form to
eq 5, namely,

= +\ \ \B B B G B (43)

where ≡ [ − ]\ −G B 1. This formulation naturally defines

the solution matrices ∈ ×X N N and ∈ ×Y N N that solve
the renormalized linear equations

[ − ] ≡\ \ B X B (44)

to give = +\ \B B B X , or, equivalently,

[ − ] ≡\ \Y B B (45)

to give = +\ \B B YB . We present both X and Y in
anticipation of the results below.
Equation 43 is the central object of analysis in this

contribution, as all other network observables can be calculated
in the manner detailed in section II. In the next section, we
derive the general convergence and sensitivity criteria, with
respect to the introduction of additional transition rates in the
network. In particular, we focus on a scalar contraction of eq
43, the total branching probability, using the committor vector
defined in eq 6:

≡ ≡C 1 1 B 1C T T
(46)

Crucially, although only states in ∪ ∪ are explicitly
enumerated in (46), the sensitivity of B to the introduction
of additional transitions involving states in \ will still be
present in the effective transition rates of the renormalized
network. However, kinetically important states should be
retained in to focus the sensitivity analysis. A detailed
analysis of the optimal strategy to determine on the fly will
be the subject of a future contribution. In the following
analysis, we assume that a suitable has been chosen, and
derive explicit terms for the sensitivity to the introduction of
new transitions between previously unconnected states in

∪ ∪ .

VI. SENSITIVITY AND CONVERGENCE
Additional sampling will usually produce new minima and
transition states, changing network properties such as B and
overall rates. A key goal of this paper is to derive expressions
for the sensitivity of such quantities to additional sampling,
thereby allowing the construction of some measure of
convergence. This is a difficult problem as the KTN is a
complex object; rate convergence is, in principle, a global
optimization problem. Furthermore, any sensitivity measure
will necessarily be dependent on the chosen sampling
strategy,33 which determines the nature of the additional
(possibly redundant) information returned by additional
sampling tasks.
In this work, we consider use of the OPTIM68 program to

perform double-ended transition state searches between
candidate state pairs (l, m) via the doubly nudged elastic
band (DNEB) method.69 In this procedure, initial pathways are
found by launching DNEB searches for “direct” pairs (l, m),
where ∈l and ∈m , which will generally return indirect
pathways with many intervening minima in . This will then
affect the graph-transformed KTN for ∪ ∪ .
Our goal is to derive a pathwise local sampling sensitivity

measure, once some initial ↔ pathways are found, which

can both propose target pairs ∈ ∪ ∪l m( , ) for
additional DNEB tasks and estimate the expected change in
network observables upon the incorporation of new sampling
data. If the expected changes can be bounded, a convergence
measure then becomes possible.
Generally, there will often be additional criteria that can

reduce the number of candidate (l, m) pairs for sensitivity and
convergence measures, based on, e.g., the distance in
configuration space, or some other metric such as the change
in bonding topology. This does not preclude the possibility of l
↔ m pathways, only the existence of direct l ↔ m transitions.
Furthermore, in the steady-state approximation for intervening
minima , and thus necessarily the renormalized region

⊂ , ←k is unchanged to first order by additional
transitions entirely within or , and B is unchanged by
transitions within . While the discovery of new , states
and their connections to could also be considered, we will
focus here on transitions corresponding to → , →
and → .
If a DNEB search returns an indirect pathway where all the

intervening minima are new, the sensitivity expression is
equivalent to that for the discovery of a direct transition (with
some effective rate). However, in the general case, especially as
sampling reaches local convergence, it is more likely that
searches will produce indirect pathways involving already
discovered minima, modifying a range of branching proba-
bilities. Locality criteria for pair selection will likely reduce the
possible number of intervening minima. However, generally,
the central complication to deriving a sensitivity measure
remains: a sampling task starting from a given pair (l, m) will
generally yield an indirect pathway with multiple intervening
minima, producing matrix modifications δK that affect a
larger number of states.
Before analyzing the exact form of the δ \K matrices

following a DNEB search, we look at the most general
expression for the change in B as defined in eq 43, and,

thus, the total branching probability C as defined in eq 46,
under additional sampling. We employ the component form
below where ambiguity could arise. Using eq 2 and the identity

δ[ ] = [ ]\ \D 1 D iij ij , the change in \D under a general
perturbation is

∑δ δ δ[ ] = [ ]\ \D 1 Kij ij i
(47)

giving a change in branching probabilities of

δ δ δ[ ] = [ ] [ ] − [ ] [ ] [ ]\ \ \ − \ \ \ −B K D K D Dij ij jj ij jj jj
1 2

(48)

To propagate these changes to B , defined in eq 43, we need
to calculate δG . For any matrix M, applying the chain rule to
δ(M−1M) = 0 yields δ(M−1) = −M−1 δMM−1. For the
renormalized Green’s function G , for a given δ \B we have

δ δ= [ − ] ⇒ =\ − \G B G G B G1
(49)

This gives a total change in B of

δ δ δ δ

δ

= + +

+

\ \ \ \ \

\ \ \

B B B G B B G B

B G B G B (50)
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where we revert to matrix products for clarity of presentation.
In terms of the solution matrices X and Y, defined in eqs 44
and 45, we can write δB in the compact form,

δ δ δ δ δ= + + +\ \ \ \B B B X Y B Y B X (51)

which motivates the linear algebra formulation. Therefore, the
total branching probability C undergoes a total change:

δ δ δ δ

δ

= + +

+

\ \ \

\

1 B 1 1 B x y B 1

y B x

C T T

(52)

where =x X1T and =y 1 Y are each obtained with a single
linear solution. In the following, we focus on the sensitivity to
new transitions that affect ← ← paths, i.e., those that
pass through , meaning that we assume δ =\1 B 1 0T in

the following expressions for δC . It is straightforward to
include this contribution to the general sensitivities (eq 55).
VI(A). Sensitivity to Any Direct or Pseudodirect

Transition. When a sampling task returns a direct transition
between (l,m), the rate matrix modifications δK have a
simple closed form. Furthermore, this closed form is also valid
when the sampling task returns an indirect transition, where all
intermediate states were previously unknown, which is a case
we label “pseudodirect”. With a forward (l→ m) rate of kU, the
reverse (m→ l) rate is defined to be ϕmlkU. Before any GT
renormalization, detailed balance implies π πϕ = [ ] [ ]/l m

ml ,
i.e., the ratio of components of the steady-state Boltzmann
distribution. The GT renormalization → generally will
modify the stationary distribution as the effective rates between
states changes. Using the renormalized rate matrices \K , we
estimated the change in the steady-state distribution by using
the Boltzmann distributions π π, and π of the retained
states as a preconditioner for an iterative minimization. While
this effect could give large changes if only sparsely connected,
high energy states are retained during the GT procedure, as we
typically retain highly connected, low energy states (those that
participate in reaction pathways), the proportional changes in
the ϕlm were extremely small, meaning that we use the
Boltzmann distributions to estimate the ϕml values. Therefore,
the modification to the existing rate matrix is given by

δ δ δ

δ ϕ δ δ

δ δ δ ϕ δ δ

[ ] = ∈ ∈

[ ] = ∈ ∈

[ ] = + ∈

\

\

\

k l m

k l m

k k l m

K

K

K

,

,

,

ml
ij

U
im jl

ml
ij

ml U
il jm

ml
ij

U
im jl

ml U
il jm (53)

where δml is the finite difference operator for ∈ ∈l m, .
In eq 53, kU is a “test rate” that represents the expected value of
the as-yet-undiscovered transition rate. When using local
saddle point search routines driven by high-temperature
molecular dynamics,32 it is possible to derive monotonically
increasing Bayesian estimators for sampling completeness,33

which can be used to estimate kU. However, when minima and
saddle points are found using geometry optimization
procedures, such as DNEB calculations, sampling completeness
estimators are not available. In the numerical examples below,
we discuss various approaches to determining an appropriate
kU, the simplest being an expected upper bound based on prior

knowledge of the system under study, such as kU = 10 THz for
thermally activated processes in metals.
The rate matrix modifications given by eq 53 cause changes

δ Bml in the branching probabilities as detailed in eq 51.
Inserting these into eq 52 gives the total propagated change,
δ Cml , for a single direct transition pathway ∈l m( , ) ( , ).
We will derive explicit expressions of these direct transitions in
the three cases of interest: ∈l m( , ) ( , ), ( , ) and
( , ).
While the first term in eq 52 accounts for possible changes

due to direct connections bypassing , our focus is on the
remaining terms that gauge the effect of changes in the
structure of the intervening region of the network. For all valid
candidate pairs, we can obtain a predicted change in the
branching probability through eq 52 and, thus, rank all pairs as
candidates for a double-ended saddle search. However, this
approach applies for a direct or pseudodirect pathway. As a
result, before giving explicit expressions for direct transitions,
we will first consider indirect paths.

VI(B). Sensitivity to an Indirect Transition. In the
general case, a sampling task targeting ∈l m( , ) , will
produce a pathway throughM intervening minima p1, p2, ..., pM.
Considering a general summation δK = ∑nδKn, with all
superscripts suppressed for brevity, we note that the change in
branching probabilities is a linear sum to first order:

∑ ∑δ δ δ δ= − =− −B K D K 1 K D Bdiag( )
n

n n
n

n
1 2

(54)

where we have used δ(D−1) = diag(1δK)D−2 to first order,
with diag(1δK) the diagonal matrix with elements given by the
components of the vector [1δK]j = ∑iδkij, the total change in
escape rate from minimum j. If new intervening minima pi are
found, the dimensions of B, K, and D must reflect the final
dimension of the space after the new path is added to the
database. Therefore, we can decompose the change in total
escape rate into contributions from direct transitions. Since the
change in total branching probability is linear in the δB , the
first-order propagated change to network observables for
indirect transitions will then simply be the sum of the
propagated changes due to the composite direct transitions.
Hence, to investigate the effect of indirect transitions, it is
sufficient to evaluate and rank all of the direct transitions in the
manner described above, which is the task of the next section.

VI(C). Sensitivity to Direct Transitions. Details are
collected in Appendix H. The final expressions for changes in
the scalar committor probability are

δ

δ ϕ

δ

∈ = [ ] − [ ] [ ]

∈ = [ ] − [ ] [ ] − [ ] [ ]

∈ = − [ ] [ ]

← −

\ − −

−

l m k

l m k k

l m k

y y D x

y yB D y D x

y D x

( , ) ( , ) C ( )

( , ) ( , ) C ( )

( , ) ( , ) C (1 )

m l U
m l l

ml U
m l ll

U ml
m m

ml U
l l

1

1 1

1

(55)

where δ ←m l is a one-sided difference operator, which includes
only the changes due to the l→ m path. As expected, self-
transitions l = m in , which are permitted after
renormalization, do not affect the committor probability. The
result for δ Cml is independent of ∈m , because of the
sum over states in the definition of the committor vector in
eq 6.
The convergence of these changes in the committor is

investigated below for two benchmark systems involving
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atomic clusters of N atoms bound by the Lennard-Jones
potential (LJN), using the regularization techniques developed
above. We have tested the sensitivity expressions by removing
known rates and looking at the predicted and actual change in
branching probabilities. In all these tests, excellent agreement
was found, demonstrating the self-consistency of our approach.

VII. SELECTION, DISTRIBUTION, AND ALLOCATION
OF SAMPLING TASKS

When an accurate sensitivity can be evaluated for all candidate
direct transitions, their influence on network properties can be
ranked according to the change in the scalar committor value
δ Cml . With a given computational budget, DNEB calculations
can then be assigned according to this ranking. However, this
approach may not ensure optimal computational efficiency; it
is likely that the number of DNEB images needed to represent
a pathway will scale approximately linearly with the distance
between candidate minima, increasing the computational cost.
A possible strategy is to weight the ranking according to the
number Nim of DNEB images that would be assigned for the
task, and consider δ NC /ml

im, to reflect the fact that multiple
less-sensitive transitions may yield better computational return
than a single sensitive transition between distant minima.
Since a DNEB calculation is a formally deterministic process,

once a given pair (l, m) has been targeted for sampling, it
should be removed from all future selections, i.e., set
δ =C 0ml . However, we note that many strategies could
yield multiple pathways on repeated DNEB searches between
the same two minima. For example, multiple initial pathways
could be attempted or stochastic forces or energetic penalty
functions could be applied during the DNEB minimization. In
this case, multiple DNEB requests could return different results
and, therefore, the δ Cml should be reevaluated each sampling
cycle, or multiple DNEB requests could be assigned to a given
pair in one cycle.

VIII. CONSTRUCTION OF CONFIDENCE INTERVALS
FOR C

The local sensitivity analysis detailed here clearly cannot solve
the global problem of whether there is some other distant set
of unexplored pathways that will drastically change the

↔ kinetics. Rather, we aim to make some statement
on the convergence of the transition rate associated with the
current database of sampled pathways.
The sensitivity metric works well if the to-be-discovered

transition is either a direct connection between two known
states, or an indirect connection involving only newly
discovered states; in either case, by postulating an upper
bound kU on the to-be-discovered transition rate between (l,
m), an upper bound on the absolute change in the branching
probabilities is obtained, to first order. We use the absolute
change to emphasize that this does not mean additional
connections necessarily increase C .
Our convergence measure for the path finding search

procedure involves upper and lower confidence intervals σ± for
the branching probability C . This sensitivity machinery was
combined with two estimators of the network structure,
namely, the expected value of newly discovered transition rates
kU above, and the connection sparsity ξ. Rigorous, monotonic
estimators of unseen rates have been developed in dynamic

sampling strategies,33 where the dynamical trajectories provide
a well-defined probability law for discovering transitions. In the
present context, where a database of stationary points is
harvested using geometry optimization, no such law exists,

meaning that the rate estimator ̂kU (defined below) will be
nonmonotonic, with uncontrolled fluctuations upon the
incorporation of new sampling data. A sensible strategy in
this scenario is to consider multiple estimators in parallel, using
the collective information to guide decisions on convergence.
In this final section, we test some preliminary estimators,
demonstrate the sensitivity framework that is a main object of
this paper; future work will concentrate on the optimal form of
estimation and, thus, how to deduce more-rigorous con-
vergence bounds. The present contribution gives the computa-
tional framework upon which such convergence concepts can
be tested.

Our estimator ̂kU has one hyperparameter, a postulated
maximum unknown rate kmax

U , which we set to kmax
U = ω0

exp(−3), where ω0 = 5 in reduced units for the LJ potential.
This value corresponds to an energy barrier of 3/β, around the
limit of the rare event regime. Future work will investigate the
dependence on the final sensitivities to estimates of kmax

U , and
when it is beneficial to spend more effort in the estimation. In
addition, we measure the logarithmic mean and variance of the
observed rates, correcting for differences in the free energy of
initial and final states through

β
β̃ ≡ [− − ]†k

h
F F F

1
exp ( max( , ))ij ij i j

(56)

∑⟨ ̃ ⟩ = ̃k k N(ln ) (ln ) /n

ij
ij

n

rates
rates

(57)

where Fij
† is the saddle point free energy (Fij

† = Fji
†), β = 1/kBT,

with kB being the Boltzmann constant and T the temperature,
meaning that Fij

† − max(Fi, Fj) is the lower free energy barrier
for the ij transition. We consider the first and second moments,
corresponding to n = 1 and 2 in constructing the rate estimator
below.
The logarithmic mean ⟨ln k̃⟩ was chosen to account for the

wide range in observed rates; it can be considered as estimating
the average free-energy barrier. Nevertheless, only if the
distribution is suitably well peaked should this mean value be

taken as informative. As a result, our preliminary estimator ̂kU

for the newly discovered rates reads

= + − − ⟨ ̃ ⟩ ⟨ ⟩̃̂ ⟨ ⟩̃k k e k k k( ) exp(1 (ln ) / ln )U U k U
max

ln
max

2 2

(58)

meaning that a large geometric variance in the observed rates
suppresses the influence of the geometric mean observed rate
e⟨ln k̃⟩.
The sensitivity analysis assigns an expected change δ Cml

to the branching probabilities upon the discovery of a new
transition for every possible transition m↔ l in the network,
where ∈ ∈m l, , apart from already-sampled pairs, where
we set the sensitivity to zero.
However, real transition networks are typically very sparse,

meaning that the sum of all possible sensitivities could be
misleadingly large, as many of the possible transitions do not
exist. Therefore, we also estimate the network sparsity ξ, which
gives the approximate probability that a search should return a
successful connection. We estimate ξ with
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ξ ξ̂ = + − −
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the number of found transition states, minima, and DNEB
searches, respectively, and Nthresh is a hyperparameter
controlling the influence of empirical data, here, set to 5000.
Therefore, our first estimator bounds ξσ±

tot are simply the
sum of all possible positive or negative changes, multiplied by
the sparsity ξ:

∑ ∑ξσ ξ δ ξσ ξ δ≡ ̂ ≡ ̂ | |
δ δ

+
>

−
<

C , Cml mltot

C 0

tot

C 0

(60)

giving the projected change ξσtot ≡ ξσ+
tot − ξσ−

tot.
We can also define the maximal bounds σ±

1 due to the
discovery of a single transition as

σ δ σ δ≡ ≡ | |+ −max C , min Cml ml1 1
(61)

giving the total single change σ1 ≡ σ+
1 − σ−

1 .
We also use the sparsity to estimate the expected number of

additional connetions. Assuming independence, the probability
of finding m connections is simply ξm(1 − ξ), giving an
expected number of connections ⟨m⟩ = ξ/(1 − ξ). We
combine this expression with the average changes to give our
last investigated bounds σ±

ξ , defined as

σ ξ
ξ

δ
≡

−

∑

∑
ξ δ

δ
+

>

>

i
k
jjjj

y
{
zzzz1

C

1

ml
C 0

C 0 (62)

and similarly for σ−
ξ with the constraint δ <C 0.

Using the first-order derivative to predict changes in a
nonlinear quantity is clearly inaccurate when either the
derivative or the predicted changes in the argument (here,
k̂U) are very large. However, higher derivatives would require
multiple linear solves, imposing a prohibitive computational
cost.
Instead, we note that C must be positive and will have a

finite upper bound due to eq 17. As a result, while we use the
raw first derivative value for the sensitivity analysis, when
plotting the predicted sensitivity bounds σ± ±C in the next
section, we restrict the range of the possible changes through
the mapping

σ
σ

+ → − − −
−

≤+
+

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
C 1 (1 C ) exp
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(63)

σ σ− → − ≥−
−

Ä
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ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
C C exp

C
0

(64)

It is straightforward to show that, for small values of σ±, we
recover the linear dependence σ± ±C , meaning that the
behavior close to convergence is unchanged. We emphasize
that this mapping is only used for visualization purposes.

IX. VALIDATION TESTS ON LJ38
To test the sampling protocol described in this work, an
“exactly known” rate matrix was constructed using the LJ38
energy landscape from the Cambridge Landscape Database.70

As is well-known, LJ38 has a double-funnel landscape47,71−73

with two competing morphologies, corresponding to two free-
energy minima at low temperatures.
The double-funnel landscape of the LJ38 cluster provides

natural definitions for the and basins. The region was
chosen as a standard set of 395 low-energy structures based
upon incomplete icosahedra, while the region was chosen as
a standard set of five low-energy structures based upon the
truncated octahedron global minimum. The sampling was
initially restricted to a truncated subnetwork of 900 minima
that contained the minimum energy pathway, meaning that

= . The truncated landscape and minimum free-energy
configurations from and are shown in Figure 1.

The minimum free energy path for β = 10 (in LJ units) has
28 intermediate states with a large effective barrier height,
representing a realistic test of the sensitivity framework
developed here for a rare event.
The sampling was initially restricted to a truncated

subnetwork of 900 minima that contained the minimum
energy pathway, meaning that = . The truncated land-
scape and minimum free-energy configurations from and
are shown in Figure 1.
To simulate DNEB connection attempts for a pair (i,j),

Dijkstra’s shortest path algorithm,74 as implemented in
scipy,75 was applied to an unweighted, undirected graph
created from the reference rate matrix. The use of an
unweighted graph is to simulate the fact that the DNEB
algorithm has an energy penalty for the length of the path and
is unlikely to find the fastest path between two distant states in
one iteration.
The “sampled” rate matrix initially contained all →

and → connections, a single known → path and,
for each state on the path, the result of a simulated single
ended saddle search, which returned, at most, two connecting
states. To create an initial → path, we used the simulated
DNEB routine described above; the initial sampled set
contained ∼50 states in .
To give high data resolution for Figures 2 and 3, the

sensitivity analysis was used to identify, in each cycle, the two
most sensitive state pairs that had not been previously sampled.
If these simulated searches returned no new results, the next
two most sensitive pairs were considered, and so on, until at
least one new transition state was found. In practice, as

Figure 1. Disconnectivity graph48 for a LJ38 landscape truncated to a
total of 900 states, in Lennard-Jones energy units (ϵ). The
cuboctahedral ( ) and icosahedral ( ) basins are colored orange
and green, respectively. Minimal free-energy configurations from each
basin are shown.
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discussed above, it is likely beneficial to sample many more
pairs simultaneously; a detailed investigation of the optimal
deployment will be the subject of future work.
In Figure 2, we present the results from this procedure with

the convergence metrics described above. For clarity of
visualization, large values of the sensitivities were regularized
with eqs 63 and 64. A few “spikes” in the committor
probability are observed, because of the discovery of a newly
sensitive connection, which will thus be ranked very high for
the next cycle. Since the actual change is typically much less
than the conservative predicted bound, the convergence
measures return to essentially the same values as previously
observed.
Sampling the most sensitive connections quickly yields the

correct branching probability, but much more sampling is

required to be confident of convergence. As expected, the
average connection sensitivity σ±

ξ is the fastest to converge,
followed by the maximum individual sensitivity σ±

1 , and then
the total sensitivity ξσ±

tot. Importantly, the confidence intervals
contain all changes in the estimates of C , and the projected
values are also stable.
The differing rates of convergence between the various

sensitivities give insight into the nature of transitions over the
landscape. For example, the comparatively slow convergence of
ξσ±

tot to σ±
1 indicates that the existing landscape requires a new

pathway to significantly change the branching probability.
Future work will investigate generalizing these ideas within a
Bayesian framework.
We also applied the same methodology to a much larger LJ38

landscape that initially contained 5310 states, using the graph
transformation method to give ⊂ , with 126 states around
the minimum free-energy path. While the effective rank is
much lower, the resulting KTN has a much higher density of
connections, because of the greater number of possible
connections between the retained nodes. In the simulated
sampling routine that we present here, this requires a much
greater degree of search coverage for similar degrees of
convergence, but over a much smaller space of possible
connections. However, in a true sampling routine, the
discovery of a new transition will affect many nodes in the
transformed system, via the same mechanisms that lead to the
much higher connection density. As a result, a similar total
number of DNEB searchs will be required in each case. A
detailed case study of this procedure being applied to aid KTN
construction will be treated in future work.
The higher connection density also leads to a larger density

of “spikes” in the convergence plots. However, this is partially a
consequence of only sampling one connection pair per cycle
for the purposes of illustration; when sampling more pairs per
cycle, the density of spikes decreases.
To conclude this section, we emphasize that, in all of these

test examples, we have made no effort to filter DNEB attempts
based on knowledge of the existing KTN nor structural or
energetic properties of the minima pair under consideration,
meaning that our metrics consider all possible interstate
connections. Optimal strategies for applying the GT
renormalization and estimating the probability that a given
minima pair will yield a new connection will be the subject of
another contribution.

X. CONCLUSIONS

In this contribution, we have developed a linear algebra
formulation for calculating waiting times and rates correspond-
ing to a kinetic transition network (KTN), to develop a
tractable scheme for judging the convergence, with respect to
sampling. We have first provided expressions for the
observables within a hierarchy of approximations, starting
with a steady-state assumption for intervening minima, and
local equilibrium for the reactants. We establish the
equivalence of the resulting matrix/vector representations
and formulas previously derived by considering sums over
pathways directly. The extension to exact rates and waiting
times further enables us to connect results based on a local
equilibrium in the reactant space to the quasi-stationary
distribution, which corresponds to the limiting case for an
absorbing boundary at the products. The linear algebra results
are fully consistent with previous results, and provide

Figure 2. Convergence test on → transitions for the truncated
LJ38 landscape illustrated in Figure 1, with β = 10. All sensitivities are
recalculated after each search cycle. Sensitivities are regularized
through the mappings (see eqs 63 and 64). The horizontal axis
indicates the number of simulated DNEB attempts as a percentage of
the total possible number of connections, approximately N(N − 1)/2,
meaning a completely converged value will be obtained at 100%.

Figure 3. Convergence test on → transitions for a LJ38
landscape of 5310 states, where a the graph transformation method
is used to remove all states more than two connections away from the
minimum free-energy path at β = 10. Sensitivities are regularized
according to eqs 63 and 64. The resulting system had N = 126
intermediate states with a much higher connection density. The
horizontal axis gives the number of simulated DNEB attempts as a
percentage of the total number of possible connections in , which
requires more complete coverage of the much smaller connection
space for similar levels of convergence.
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additional insight, as well as a more efficient way to compute
some of the properties of interest. In particular, we derive
formulas to estimate the sensitivity of branching matrices,
committor probabilities, and hence rates when new network
connections are hypothesized. These sensitivity measures can
be used to direct the sampling strategy to converge the
database of stationary points, with respect to rates.
To test convergence, we have applied the sensitivity

calculations to existing databases for an atomic cluster bound
by the Lennard-Jones potential, namely LJ38, where two
morphologies compete to give a double-funnel landscape that
causes broken ergodicity, and structural interconversion
constitutes a rare event. Starting from small subsets of the
database, we use the sensitivity indices to propose new
searches for connections between local minima, and simulate
their discovery using the known connectivity of the full
databases. In each case, the sensitivities and bounds on the
committor probability initially exhibit large fluctuations, which
decrease as the sampling progresses. The bounds converge
rapidly to the correct values, demonstrating that this
framework should provide a powerful tool for constructing
and converging KTNs in new systems. This approach is
generally applicable throughout molecular and condensed
matter science, and we envisage future applications to
problems ranging from atomic and molecular clusters, through
biophysics, to condensed matter.

■ APPENDIX A: GLOSSARY OF USEFUL FORMULAS

Here, we summarize various results that are useful for the
derivations. Note that the identities for B and G matrices do
not hold for the corresponding B̃ and G̃ versions.
Compound branching probabilities and renormalized

waiting time:
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Here, ←B is the probability corresponding to all possible
paths that leave and reach via any number of steps in
without returning to ; ←B is the probability corresponding
to all possible paths that leave and return to via any
number of steps in without reaching . The G matrices sum
over all paths consisting of any number of steps defined by
simple or compound branching matrices. Hence, ←G is the
sum of probabilities for all nonreactive paths. The quantities
identified with a superscript also correspond to the values
used in graph transformation renormalization after all the
intervening minima in the region are removed.
Identities involving G matrices:
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The G matrix derivative for simple branching matrices is given
as follows:
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The committor probabilities are defined as
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for minima ′ ∈b b, and ∈a .
Identities related to the conservation of probability:
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■ APPENDIX B: DERIVATION OF EQ 10

The expected waiting time for a transition from any state
∈z to any another state in via an arbitrary number of

steps between states in , as presented in eq 10, is given by the
z component of

ζ ζ

ζ

∂
∂

̃ | = ∂
∂

̃ + ̃ ̃ ̃ |

= +

+ ∂
∂

̃ | +

= +

+ +

= +

+ +

= + +

= +

≡ [ ]
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ζ

= =

− −
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1 B D G B 1 B D G B
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1 D
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( )

( )

( )

IY

0 0

1 1

0
1

1 1

1 1

1 1

1 1

1 1

1 1

1

(B1)

The sum of path weights out of every component of is
unity, because 1 B = 1 , so we obtain the average escape
times from the above construction.
The derivative G̃ , used above, can be obtained by

differentiating the series form ∑ ̃
=

∞ B( )n
n

0 , or using

ζ ζ
∂
∂

̃ | = − ∂
∂

̃ |ζ ζ=
− −

=G G G G0
1 1

0
(B2)

and ̃ = − ̃− G B1 , to obtain ̃ |
ζ ζ
∂
∂ =G 0 = −− −G D G D G1 1

= − −G D G( ) 1 = −G B D G1 (see Appendix A for a
summary of useful relations between these quantities).
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■ APPENDIX C. DERIVATION OF MATRIX
EXPRESSION FOR EXACT WAITING TIME

Writing eq 12 in the more-compact form ̇ =∪ ∪P MP and
a row vector of ones of dimension corresponding to ∪ as

∪1 , we can show

= −∪1 M 1 K K( , ) (C1)

and, hence,

τ ∈ [ + ] = − ̇

= −

=

∪ ∪

∪ ∪

∪

P t t t t

t

t

1 P

1 MP

1 K K P

( , d ) d

d

( , ) d (C2)

Integrating the master eq 12 formally to give ∪ tP ( ) =

∪tM Pexp( ) (0) and performing the integrals in eq 14 gives

τ⟨ * ⟩ = −←

−
∪

−
∪

1 K K M P
1 K K M P

( , ) (0)
( , ) (0)

2

1
(C3)

Using eq C1, we can simplify the above expression, since ∪1
= − −1 K K M( , ) 1, we have

= − = −−
∪ ∪ ∪1 K K M P 1 P( , ) (0) (0) 11

(C4)

for the given initial conditions. Hence,
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where = −− G B1 .
To proceed, we consider the linear system

τ
−

−
= ⇒ ⟨ * ⟩ = +

−

− ←
− −
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(C6)

We can solve for x and x analytically by first expanding the
matrix vector product as

− = ⇒ =

− = ⇒ = [ − ]

−

− − −

G x B x 0 x G B x

G x B x P x G B G B P

,

(0), (0)

1

1 1 1

(C7)

We then recover eq 15 directly.

■ APPENDIX D. DERIVATION OF EXACT PASSAGE
TIME EXPRESSIONS

Here, we follow section III and consider the waiting time
associated with a sum over all paths that start in and reach

any minimum in via any number of steps in the region
with returns to allowed. The path weight can be factorized
into a component to account for nonreactive paths starting and
finishing in via any number of steps in , and then a reactive
path from to via the region:

τ⟨ * ⟩ = ∂ ̃ ̃ |ζ ζ← =1 B G P( ) (0)0 (D1)

This formulation gives the average waiting time for each
component in , because the path weights sum to unity in
each case. From eq 17, we have1 B G =1 . Then, from eq
10, we have

∂ ̃ | + ∂ ̃ | = [ ]ζ ζ ζ ζ= =
−1 B 1 B 1 D0 0

1

We now use the chain rule, the derivative ∂ ̃ |ζ ζ=G 0 =

∂ ̃ |ζ ζ=G B G0 , and 1 B G = 1 from the conservation
of probability (Appendix A) to rewrite eq D1 as

τ⟨ * ⟩ = [ ∂ ̃ | + ∂ ̃ | ]

= [ ∂ ̃ | + ∂ ̃ | ]

= [ ]

ζ ζ ζ ζ

ζ ζ ζ ζ

← = =

= =

−

1 B 1 B G B G P

1 B 1 B G P

1 D G P

(0)

(0)

(0)

0 0

0 0

1

(D2)

in agreement with eq 15, where [ ]−1 D 1 = −1 D 1 +
−1 D G B1 .

■ APPENDIX E. INITIAL CONDITION IN TO
REPRODUCE EXACT WAITING TIME FOR AN
ARBITRARY INITIAL CONDITION IN ∪

Following eq 14, the exact waiting time for any initial condition
in ∪ reads

τ⟨ * ⟩ ≡
− −

− −← ∪

−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É
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D K K

K D K
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(0)

(0)

T 1

(E1)

which is identical to eq 14, except that, now, P (0) ≠ 0 . Recall
that the exact =P 0(0) result (eq 15 or eq 20) can be

written as τ⟨ * ⟩← = [ ]−1 D G P (0)1 . Rearranging eq E1
gives the analogous result

τ⟨ * ⟩ = [ ] [ + ] +

= [ ] ̅

← ∪
− −

−

1 D G P B G P 1 D G P

1 D G P

(0) (0) (0)

(0)

1 1

1

(E2)

with

̅ = + [ + [ ] ⊗ ]− −P P K G D z 1 D G P(0) (0) ( ) (0)1 1

where z is any vector that satisfies =1 z 1. This freedom is
not surprising, because this term accounts for all paths that
decay to without passing through . Therefore, we see that
the exact waiting time for arbitrary initial conditions in ∪
can be recovered in the GT-renormalized Markov chain with
an initial condition = ̅P P(0) (0)I . Requiring ̅ =1 P (0) 1
for a probability distribution in I yields
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̅ = + [ + [ ] ] =

⇒ [ ] =
− −

− −

−
−

1 P 1 P 1 B G 1 G D z 1 D G P

1 G D z
1 P 1 B G P

1 D G P

(0) (0) ( ) (0) 1

1 (0) (0)
(0)

1 1

1
1

(E3)

As =1 z 1, z can be thought of as a probability distribution

in I , meaning that [ ]−1 G D z1 is the flux to for
=P zI by comparison with the evolution defined by eq 19.

Similarly, the denominator on the right can be interpreted as
the waiting time for escape to for paths that never pass
through I , while the numerator is the corresponding total
probability for such paths.
Finally, B G P (0) is probability mass from that passes

through before reaching , the product of the compound
probability G P (0) of all paths that remain in multiplied by

the branching probability = −B K D 1 into . The exact
GT result for the waiting time shows that the initial
distribution in I is P (0) plus a renormalized branching
probability for probability in , namely with effective rates

→ + [ ] ⊗−K K G D w 11 , which accounts for the

flux into from paths that do not enter I .

■ APPENDIX F. DERIVATION OF STEADY-STATE
TRANSITION RATE AND WAITING TIME

The steady-state approximation assumes that the intervening
region is in local equilibrium with Ṗ = 0 on the time scale of
transitions between , . This assumption is reasonable when

, are sufficiently metastable. The approximation of a
steady state in yields the equality

= [ − ] [ + ]−D P B B D P B D P1
(F1)

In addition, the original SS DPS derivation assumes that both
and are populated with local restricted equilibrium

distributions

π π→ ̂ → ̂t t t tP P( ) P ( ), ( ) P ( ) (F2)

Therefore, we obtain a reduced evolution equation for P
(with the obvious analogue for )

π π

π π

̇ = [ − ] ̂ + ̂ +

= [ − ] ̂ + ̂





1 B D 1 B D 1 B D P

1 B D 1 B D

P P P

P P ,
(F3)

where the branching probabilities B are defined in eq 5. The
steady-state ← rate into from can be read directly
from eq F3), giving

π π= ̂ = ̂←k 1 B D C DSS
(F4)

The last equality uses the committor definition given in eq 6 to
recover eq 36.
As noted in section IV(D), the above expression for the rate

associates a waiting time for each path that only accounts for
the escape time from the initial minimum.

■ APPENDIX G. FIRST-STEP ANALYSIS FOR
EQUIVALENCE OF EQS 37 AND 39

In the state space after the removal of all minima and ′ ≠b b
in the renormalized waiting time and branching proba-
bilities, denoted τb

F, P b
F and Pbb

F in previous work,8 correspond

to steps from b to any ∈a or back to b. b is then
obtained as

τ

τ

τ

= + + +

=
−

=

P P P

P
P

P

(1 2 3( ) ...)

(1 )

b b b bb bb

b b

bb

b

b

F F F F 2

F F

F 2

F

F
(G1)

From the first-step relation66

∑τ= + [ ]
∈

Bb b
b

b bb1 1 1
(G2)

adding and subtracting b1
on the right, we find

∑ ∑τ= + [ ] − + [ ]
∈ ∈

B B( )b b
b

bb b b
b

bb b1 1 1 1 1 1

so

∑τ= + −
∈

C C ( )b b b
b

b
b

b b1 1 1 1 1

Hence, τ= C/b b b1 1 1
if b is the same for all b, and the

two rate formulations in eqs 37 and 39 agree.
For completeness, we now demonstrate how the first-step

relation is encoded in the matrix formulation that is the
principal representation of the present contribution. With b

= [ [ ] ]−1 D G b
1 , we have

∑

τ

[ ] = [ [ ] ] = [ [ ] − ]

= [ [ ] ] − [ [ ] ] = −

∈

− −

− −

B 1 D G B 1 D G

1 D G 1 D

( )

(as required)

b
b bb b b

b b b b
I

1 1

1 1

1 1 1

1 1 1 1

(G3)

■ APPENDIX H. SENSITIVITY TO DIRECT
TRANSITIONS

H-1. Sensitivity to Direct → Transitions
For the case l m( , ) ∈ ( , ), we must consider sensitivity to
both the l← m perturbation and the m← l perturbation. If we
define the “one-sided” difference operator δ ←m l as only
accounting for the l → m perturbation, from detailed balance,
we can write

δ δ ϕ δ= +← ←C C Cml m l ml l m
(H1)

The rate matrix modification from eq 53 reads

δ δ δ ϕ δ δ δ[ ] = + −\K k ( ( ) )ml
ij

U
im jl

ml
lm jm il (H2)

with all other modifications are zero. This gives branching
probability modifications of general form

δ δ ϕ δ= +\ ← \ ← \B B Bml m l ml l m
(H3)

Therefore,

δ δ δ[ ] = − [ ] [ ]← \ \ −kB B D( )m l
ij

U
im il ll jl

1
(H4)

δ δ[ ] = − [ ] [ ]← \ \ −kB B Dm l
ij

U
il ll jl

1
(H5)
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δ =← \B 0m l
(H6)

where we emphasize that δ ← \Bm l is the modification only
for l→ m. Note the index swap in the second term of eq H4 to
capture the reverse m→ l contribution with rate kUϕml.
The “one-sided” sensitivity of the total branching probability

can then be written

δ δ δ= +

= [ ] − [ + ] [ ]

= [ ] − [ ] [ ]

← ← \ ← \

\ \ −

−

k

k

1 B x y B x

y yB 1 B D x

y y D x

C

( )

( )

m l m l m l

U
m l l

U
m l l

1

1

(H7)

where the last in equality uses eq 45, which implies that
+ =\ \yB 1 B y .

H-2. Sensitivity to Direct → Transitions
For ∈l m( , ) ( , ), we have the rate and branching
probability matrix modifications,

δ δ δ[ ] =\ kKml
ij

U
im jl (H8)

δ[ ] =\K 0ml
ij (H9)

δ δ δ[ ] = − [ ] [ ]\ \ −kB B D( )ml
ij

U
im il ll jl

1
(H10)

δ ϕ δ[ ] = − [ ] [ ]\ \ −kB B Dml
ij

U ml
im mm jm

1
(H11)

where = , , and, thus, the final sensitivity, with ∈l ,
∈m , is

δ ϕ= [ ] − [ ] [ ] − [ ] [ ]\ − −k ky yB D y D xC ( )ml U
m l ll

U ml
m m

1 1

(H12)

H-3. Sensitivity to Direct → Transitions
For ∈l m( , ) ( , ), we have the rate matrix modifications

δ δ δ[ ] =\ kKml
ij

U
im jl (H13)

δ ϕ δ δ[ ] =\ kKml
ij

U ml
il jm (H14)

giving, in turn,

δ δ δ[ ] = − [ ] [ ]\ \ −kB B D( )ml
ij

U
im il ll jl

1
(H15)

δ δ[ ] = − [ ] [ ]\ \ −kB B Dml
ij

U
il ll jl

1
(H16)

δ[ ] =\B 0ml
ij (H17)

and, thus, the final sensitivity, with ∈l , ∈m , of

δ = − [ ] [ ]−k y D xC (1 )ml U
l l

1
(H18)

which we note is independent of ∈m , as expected, because
of the form of the committor vector C defined in eq 6, with a
sum over all states.
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