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Atomistic-to-continuum description of edge dislocation core:
Unification of the Peierls-Nabarro model with linear elasticity
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Conventional linear elasticity theory predicts the strain fields of a dislocation core to diverge, whereas it is known
from atomistic simulations that core strains should remain finite. We present an analytical solution to a generalized,
variational Peierls-Nabarro model of edge dislocation displacement fields that features a finite core width and
correct isotropic elastic behavior at large distances away from the core. We derive an analytical expression for the
dislocation core radius, representing the convergence radius of the linear elasticity far-field expansion. The strain
fields are in qualitative agreement with atomistic simulations of 1

2 [111](101) edge dislocations in bcc tungsten
and iron. The treatment is based on the multistring Frenkel-Kontorova model that we reformulate as a generalized
Peierls-Nabarro model using the principle of least action.
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I. INTRODUCTION

The assessment of accuracy of the line-tension model for
modeling dislocations is essential for deriving physical models
for dislocation energetics in dislocation dynamics simulations.
Linear elasticity predicts that straight dislocations have neg-
ative line tension with respect to small fluctuations [1,2],
suggesting that the energy of a dislocation would decrease as
a result of it bowing out. This is in stark contrast to atomistic
simulations that consistently predict positive line tension. The
central problem of linear elasticity theory in this context is its
inability to describe the displacement field of the dislocation
core: The strain field of the dislocation is found to diverge in
the glide plane, leading to infinite energy density unless the
divergence is cut out or otherwise regularized. A physically
consistent treatment of the dislocation core is therefore a
prerequisite for correctly describing dislocation line tension
in a continuum model.

It was shown by Peierls [3] that the divergence can be
resolved by the inclusion of a periodic misfit potential, rep-
resenting the forces of the periodic arrangement of atoms in
the crystal lattice. The misfit potential energetically penalizes
concentrations of strain, causing the dislocation core to spread
out and attain a finite size. Models developed later [4–6] offer a
connection between the generalized stacking fault energy and
various phenomena involving dislocation cores. Yet a common
drawback of these models is either an incomplete description of
elasticity away from the core, or the lack of tractable analytical
solutions.

We present a continuum theory of edge dislocation that
features a finite core size, as in the Peierls-Nabarro [7] model,
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as well as a displacement field which is consistent with
linear isotropic elasticity theory away from the core. The
displacement fields are found to be in agreement with the
atomistic displacements derived from molecular dynamics
simulations of body-centered-cubic (bcc) iron and tungsten,
provided that the dislocation core is wide enough to agree with
the underlying continuum approximation. The model is derived
from the discrete multistring Frenkel-Kontorova [8] (MSFK)
model, which in the continuum limit unifies linear elasticity
and the Peierls-Nabarro model in a consistent manner.

The derivation of the continuum equations from the MSFK
model is outlined in Sec. II. The continuum model com-
patible with both the Peierls-Nabarro model and isotropic
linear elasticity theory is presented and solved analytically in
Sec. III for a straight edge dislocation.

II. ANALYTICAL SOLUTION FOR THE STRAIN FIELD
OF A STRAIGHT EDGE DISLOCATION

Atoms in the multistring Frenkel-Kontorova model are con-
sidered to interact harmonically with their nearest neighbors
in the direction parallel to the Burgers vector, forming linear
elastic strings. Each atom also feels the effect of sinusoidal
potentials from the neighboring strings, which may be locally
shifted with respect to a reference string. To make an analytical
solution possible, atoms are constrained to only move along the
direction of the Burgers vector. Consequently the model only
delivers the displacement field parallel to the Burgers vector
of the dislocation.

Let the atomic positions xn, j be indexed by their position n

within a string and by the vector-valued index j representing
the string location in a plane orthogonal to the Burgers vector,
as illustrated in Fig. 1. As the strings are parallel to the Burgers
vector, in a monoatomic lattice the equilibrium atomic spacing
along the string is the Burgers vector length b. The discrete
Lagrangian is expressed in terms of atomic displacements
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FIG. 1. The multistring Frenkel-Kontorova model pictured in the
xy plane. Atoms in the lattice are classified by dividing the lattice into
atomic strings lying parallel to the Burgers vector b. Neighboring
atoms in a string interact harmonically. Each atom xn, j interacts
with the surrounding strings via a sinusoidal potential shifted by the
displacement of a reference atom xn, j+h.

un, j = xn, j − nb as

L =
∑

j

∞∑
n=−∞

(
mu̇2

n, j

2
− α

2
(un+1, j − un, j )

2

)

− mω2b2

2π2

∑
j ,h

∞∑
n=−∞

sin2

(
π

b
(un, j − un, j+h )

)
, (1)

where m is the atomic mass. For the edge dislocation geometry
considered here, the natural frequency ω characterizes the
strength of interaction between the strings, and α characterizes
the stiffness of harmonic interaction between neighboring
atoms in a string. Vector summation runs over the string
positions j and the displacement vector h of their respective
nearest neighbors.

We shall next introduce a dislocation into the material. For
this purpose we divide R3 into two volumes, �+ and �−,
separated by the dividing surface, ∂�, as illustrated in Fig. 2.
Note that the dividing surface must not cut atomic strings;
the surface normal is perpendicular to the string direction at
any point in space, hence nx = 0. The edge dislocation is
introduced as a discontinuity in the displacement boundary

êz

êy

êx
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Ω+
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∂Ω

FIG. 2. Continuum representation of the string summation terms
for the example of a bcc 1

2 [111](101) edge dislocation, where b ‖ êx .
The black dots represent MSFK strings as seen in the direction parallel
to the Burgers vector. Vectors shown in green illustrate summation
over string-neighbor vectors h. Note that summation is not performed
across the glide plane ∂� (dashed line), leading to the structure
constant G to adopt different values at the surface and in the bulk.
The effective number of strings interacting across the plane in this
example is Z = 2.

conditions as the dividing surface is crossed:

lim
n→−∞ un, j = b/2 and lim

n→∞ un, j = 0, j ∈ �+,

lim
n→−∞ un, j = −b/2 and lim

n→∞ un, j = 0, j ∈ �−.

(2)
The dividing surface ∂� is therefore equivalent to the disloca-
tion glide plane.

The Lagrangian (1) only depends on the difference between
atomic displacements that are generally considered to vary
slowly in space. An exception occurs when two neighboring
strings lie on opposite sides of the dividing surface due to
the discontinuity introduced through the boundary conditions.
The displacement field difference between strings within the
same domain �+ or �− however is considered small, and the
potential can therefore be linearized. The Lagrangian is split
into three parts: two for the �+ and �− domains and one for
the dividing surface ∂�, namely

L = L�+ + L�− + L∂�, (3)

where:

L�± =
∑
j∈�±

∞∑
n=−∞

(
mu̇2

n, j

2
− α

2

(
∂un, j

∂n

)2
)

− mω2

2

∑
j ∈ �±

j + h ∈ �±

∞∑
n=−∞

(
∂un, j

∂h

)2

(4a)

L∂� = −mω2b2

π2

∑
j ∈ �+

j + h ∈ �−

∞∑
n=−∞

sin2

(
π

a
(un, j − un, j+h )

)
.

(4b)

The summation in the surface term L∂� runs over all the
neighboring string pairs on the opposing sides of the dividing
surface. The factor of 2 compared to the original Lagrangian
(1) is accounting for double counting in the string summation.

In the continuum limit, the atomic displacements defined
in �±, respectively, become continuous scalar fields u± =
u±(r, t ). The Lagrangian of the discrete system hence becomes
a volume integral over the Lagrange density:

L = L�+ + L�− + L∂�

L�± = η

∫
�±

dV

(
m(u̇±)2

2
− αb2

2

(
∂u±

∂x

)2

− mω2l2

2

∑
h

′
(

ê
y

h

∂u±

∂y
+ êz

h

∂u±

∂z

)2
)

L∂� =
∫

∂�

dS

(
−Zmω2b

π2l

)
sin2

(
π

b
(u+ − u−)

)
, (5)

where η is the atom number density, l is the perpendicular
distance between neighboring strings, ê

y

h = êy .h/‖h‖, and Z
refers to the effective number of neighboring strings that lie
across the dividing surface. The displacement fields on the
dividing surface are defined in terms of the limit approaching
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the surface, namely

u±(r ) = lim
γ→0

u±(r − γ n±(r )), r ∈ ∂�, (6)

where n±(r ) are the outwards-facing surface normals of the
domains �±, hence n+(r ) = −n−(r ).

Some subtleties are involved in taking the continuum limit.
Consider the second term in Eq. (4a). The string summation
is performed in such a way that only strings within the same
domain �+ or �− interact; the interaction does not cross the
glide plane ∂�, as the nonlinear interaction of strings across
�+ and �− is already captured in Eq. (4b). Summation over the
neighboring strings h in Eq. (5) therefore leaves out the strings
lying across the glide plane ∂� if integration is performed
over the surface, which is indicated by the primed summation
symbol. We refer to Fig. 2 for a visual guide.

We proceed by minimizing the action associated with the
Lagrangian with respect to variation in displacement fields and
their derivatives. Let the action be defined as the time integral
over the Lagrangian:

S[u] =
∫

dt L[u, ui], (7)

where the coordinate i refers both to spatial and time coor-
dinates, and ui = ∂iu(r, t ). The stationary point of the action
δS[u] = 0 is found by variation of the scalar field and its first
order derivatives:

δS[u] =
∫

dt

(
∂L[u, ui]

∂u
δu + ∂L[u, ui]

∂ui

δui

)
!= 0. (8)

The derivatives ∂/∂u and ∂/∂ui are understood as functional
derivatives. Note that we consider the variation δu not to vanish
at the ∂� boundary, as we are looking to find the displacement
field at the glide plane. Applying integration by parts and the
divergence theorem yields the MSFK equations of motion from
the stationary condition:

0 = −ü+ + c2u+
xx + ω2l2G(u+

yy + u+
zz), r ∈ �+

0 = −ü− + c2u−
xx + ω2l2G(u−

yy + u−
zz), r ∈ �−

0 = Gs
yyu

+
y n+

y + Gs
zzu

+
z n+

z + 2Gs
yz(n+

y u+
z + n+

z u+
y )

+ Z
πηl3

sin

(
2π

b
(u+ − u−)

)
, r ∈ ∂�

0 = Gs
yyu

−
y n−

y + Gs
zzu

−
z n−

z + 2Gs
yz(n−

y u−
z + n−

z u−
y )

− Z
πηl3

sin

(
2π

b
(u+ − u−)

)
, r ∈ ∂�, (9)

where αb2/m = c2, and ui = ∂u/∂i. The structure constant
Gij is defined as Gij = ∑′

h êi
hê

j

h, and equals Gij = Gδij in
the bulk, where G = 2 for the square lattice and G = 3 for
the hexagonal lattice. The value of constant Gs

ij in the glide
plane depends on the geometry of the dislocation cut, as lattice
vectors h crossing the glide plane are left out of the summation.
Note that we have used condition n±

x = 0.
We shall next restrict ourselves to the treatment of a straight

edge dislocation, by aligning the dividing surface with the xz

plane. Domains �± now become the upper and lower open

half planes in R2, respectively,

�+ = {(x, y) ∈ R2 | y > 0}
�− = {(x, y) ∈ R2 | y < 0}

∂� = {(x, y) ∈ R2 | y = 0},
(10)

with the normal vector components of n±
y = ∓1 and n±

z = 0.
The z coordinate can be left out as the edge dislocation strain
fields are translationally invariant along the line direction êz,
hence u±

z = u±
zz = 0. We further consider the dislocation to be

static, ü± = 0, to arrive at the elastostatic equations. Equations
of motion now reduce to a boundary value problem:

u+
xx + ω2l2G

c2
u+

yy = 0, y > 0 (11a)

u−
xx + ω2l2G

c2
u−

yy = 0, y < 0 (11b)

πηl3Gs

Z u+
y = πηl3Gs

Z u−
y

= sin

(
2π

b
(u+ − u−)

)
, y = 0, (11c)

where Gs = Gs
yy . This boundary value problem is reminiscent

of Peierls’ formalism [3], although the MSFK equations of
motion have a more general range of validity and span the
entire space R2.

At this point we can also establish a connection between
the nonsingular MSFK model and the isotropic elastostatic
equations. The elastostatic equations follow from Hooke’s law,
σij = ∑

kl cijkl (uk,l + ul,k )/2, the stationary stress condition,∑
j σij,j = 0, and plane-strain conditions, uz = 0:

ux,xx + 1 − 2ν

2(1 − ν)
ux,yy = − 1

2(1 − ν)
uy,xy

uy,yy + 1 − 2ν

2(1 − ν)
uy,xx = − 1

2(1 − ν)
ux,yx .

(12)

The elastostatic equations can be matched to MSFK by re-
stricting the displacements to only occur in the ux direction:

ux,xx + 1 − 2ν

2(1 − ν)
ux,yy = 0. (13)

From this comparison we identify the MSFK constant ω2l2G
c2 as

1−2ν
2(1−ν) , leading to the MSFK definition of Poisson’s ratio:

ν = αb2 − 2Gl2mω2

2(αb2 − Gl2mω2)
. (14)

We note that (14) shows that the ratio of deformations along
x and y can be simply written in terms of the energy stored
in springs of strength α and mω2 extended to respective
interatomic spacings b and l.

We now need to solve the problem posed by Eqs. (11a)–
(11c). Consider the function w(x, y) = u−(x,−y), which has
the same support as u+. It is simple to show that the sum
w(x, y) + u+(x, y) obeys the Laplace equation in y > 0, is
identically zero in the limit x → ±∞ for y > 0 and satisfies
d/dy(w + u+) = 0 on y = 0. By the uniqueness of solutions
to the Laplace equation, we find by inspection that (w +
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u+) = 0 everywhere on y � 0, giving the symmetry relation
u+(x, y) = −u−(x,−y). Using this relation, which we note
is obeyed by the Volterra solution for an edge dislocation, we
only need to consider the following boundary value problem
in the upper half plane:

u+
xx + 1 − 2ν

2(1 − ν)
u+

yy = 0, y > 0

(15)
4π

p
u+

y = sin

(
4π

b
u+

)
, y = 0,

where p = Z/(ηl3Gs ) is the dimensionless surface structure
constant. The solution to the problem above, after some minor
substitutions, has been found by Dudarev [8], namely

u+(x, y)= b

2π

(
π

2
− arctan

(
px

b+py

√
1−2ν

2(1−ν)

))
, y >0

u−(x, y)= b

2π

(
−π

2
+ arctan

(
px

b−py

√
1−2ν

2(1−ν)

))
, y <0,

(16)

or

u(x, y) = b

2π
sgn(y)

(
π

2
− arctan

(
px

b + p|y|

√
1−2ν

2(1−ν)

))
,

y ∈ R\{0}, (17)

where sgn is the sign function: sgn(x) = 1 if x � 0, otherwise
−1.

A useful measure for the dislocation core width w is the full
width at half maximum of the ∂u(x, y)/∂x strain field in the
glide plane, that is for y → 0:

w = 2b

p

√
2(1 − ν)

1 − 2ν
. (18)

The key feature of this solution is that the core width w

remains finite as predicted by atomistic simulations; the strain
field ∂u(x, y)/∂x does not diverge at the glide plane. Another
interesting finding is that the dimensionless surface-structure
constant p = Z/(ηl3Gs ) controlling the core width is solely
determined by the crystal structure and the geometry of
the edge dislocation cut. This suggests that the width of
the dislocation core does not depend on the details of the
chosen interatomic potential. We have so far neglected the
displacement field perpendicular to the Burgers vector. This
is evident in the simplification of the elastostatic Eqs. (12) to
(13).

Concluding this section we summarize and elaborate the
approximations taken up to this point:

(i) The discrete MSFK Lagrangian (1) only considers
nearest-neighbor interactions. We refer to a study on the
string-string interaction strengths for the [111] direction in
bcc iron [9]. The interaction between nearest-neighbor strings
is estimated to be about two orders of magnitude larger
than the interaction between second-nearest-neighbor strings,

which motivates our complete neglect of the second-nearest
neighbors.

(ii) The MSFK string potential is linearized for strings that
do not lie adjacent to the glide plane. This is consistent with
linear elasticity theory.

(iii) The discrete Lagrangian (1) is brought to the contin-
uum limit, replacing discrete differences in atomic displace-
ment by first-order derivatives of a continuous displacement
field; the displacement field is assumed to change slowly over
the atomic spacing. This approximation is expected to become
inaccurate for very narrow dislocation cores.

(iv) In the continuum limit the nonlinear string-string
interaction is averaged over strings lying across the glide plane,
giving rise to the effective string number Z . This procedure
neglects the relative staggering of atomic layers along the
line direction, effectively treating the mismatch potential in
a mean-field picture.

(v) The displacement field perpendicular to the Burgers
vector is entirely neglected, consequently the far-field behavior
of the displacement fields is inconsistent with the linear
elasticity solution of the straight Volterra edge dislocation.

The approximations listed under the first four points most
strongly influence the dislocation core region, leaving the
far-field properties of the displacement fields unaffected. The
neglect of the perpendicular displacement field however, see
point (v), leads to an unphysical far-field behavior of the elastic
fields; we are effectively assuming linear strain conditions
instead of plane strain conditions.

III. ANALYTICAL SOLUTION FOR THE FULL STRAIN
FIELD OF AN EDGE DISLOCATION

It appears possible to extend the MSFK model into two
dimensions by including the appropriate interactions between
the atomic strings in the directions perpendicular to the Burgers
vector. The detailed nature of such interactions is not of major
interest as there is in principle an endless variety of interatomic
potentials that all reproduce the elastostatic equations. We
present one such example of a minimal two-dimensional
discrete MSFK model in the appendix.

The two-dimensional MSKF model offers a physically
motivated extension of the Peierls original description of the
edge dislocation core, valid in the entire space and consistent
with isotropic linear elasticity. The surface boundary value
problem is unchanged by the presence of the transverse field
uy . We are hence justified in using a generalized elastostatic
boundary value problem in two dimensions:

u+
x,xx + 1 − 2ν

2(1 − ν)
u+

x,yy = − 1

2(1 − ν)
u+

y,xy, y > 0

u+
y,yy + 1 − 2ν

2(1 − ν)
u+

y,xx = − 1

2(1 − ν)
u+

x,yx, y > 0

lim
y→0+

4π

p
u+

x,y = lim
y→0+

sin

(
4π

b
u+

x

)
. (19)
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Following Peierls [3], the boundary value problem (19) can be solved by making an educated guess. We have found the following
solution:

ux = b sgn(y)

2π

(
π

2
+ 1

2(1 − ν)

κ2x|y|
(κx)2 + (κ|y| + b)2

− arctan

(
κx

κ|y| + b

))

uy = b

8π (1 − ν)

(
2κ|y|(b + κ|y|)

(κx)2 + (κ|y| + b)2
− (1 − 2ν) ln

(
(κx)2 + (κ|y| + b)2

κ2

)
− 1

)
, (20)

where we define the rescaled constant κ to make the solution more readable:

κ ≡ 2(1 − ν)

3 − 2ν
p. (21)

Substituting the above equations into the boundary value problem (19) confirms the validity of this solution. The displacement
field becomes identical to the known solution of the one-dimensional Peiers-Navarro model (15) at the glide plane in the limit
y → 0+, see Eq. (16), though the crowdion width differs slightly. It is further evident that the solution reduces to the analytical
form of the Volterra edge dislocation [2] in the p → ∞ limit:

lim
κ→∞ ux = uVolterra

x = b

2π

(
sgn(y)

π

2
+ 1

2(1 − ν)

xy

x2 + y2
− arctan

(
x

y

))

lim
κ→∞ uy = uVolterra

y = b

8π (1 − ν)

(
y2 − x2

x2 + y2
− (1 − 2ν) ln(x2 + y2)

)
. (22)

IV. ANALYTICAL DERIVATION OF THE DISLOCATION
CORE RADIUS

The general solution of the displacement field caused by
a straight dislocation in an infinite elastic medium can be
expressed in terms of cylindrical coordinates (ρ, θ, z) as [10]:

u(ρ, θ ) = v ln(ρ) + u0(θ ) +
∞∑

n=1

un(θ )
1

ρn
, (23)

where the first two terms represent the Volterra solution, and the
Laurent series represents far-field corrections to the elastic field
due to nonlinearities inherent to the dislocation core. The effect
of the main contribution (n = 1) to the elastic field has been
thoroughly studied by Clouet et al. in isotropic and anisotropic
elasticity [11–14], and was found to be of major importance
for dislocation core energy calculations.

The effect of the dislocation core can be considered through
the far-field corrections (23). However, this representation does
not offer a definition of the transition radius between near and
far field, commonly referred to as the dislocation core radius.
In contrast, the analytical solution to the 2D-MSFK problem
enables us to explicitly investigate the convergence behavior
of the Laurent series.

For simplicity we shall only consider the solution on the
upper half plane, that is for y > 0 or θ ∈ (0, π ). The series
expansion of the 2D-MSFK displacement fields (20) is taken
for ρ → ∞ [15]:

ux (ρ, θ ) = uVolterra
x (ρ, θ ) +

∞∑
n=1

ux,n(θ )

ρn

uy (ρ, θ ) = uVolterra
y (ρ, θ ) +

∞∑
n=1

uy,n(θ )

ρn
, (24)

with the coefficients found as:

ux,n(θ ) = (−1)n
b

2π

(
b(3 − 2ν)

2p(1 − ν)

)n

×
(

sin(θ ) cos
(

nπ
2 − nθ − θ

)
2(1 − ν)

− 1

n
sin

(
nπ

2
− nθ

))

uy,n(θ ) = b

4π (1 − ν)

(
b(3 − 2ν)

2p(1 − ν)

)n

×
(

sin(θ ) sin

(
nπ

2
+ nθ + θ

)

+ 1 − 2ν

n
cos

(
nπ

2
+ nθ

))
. (25)

Note that the term not included in the Laurent series is the
known Volterra displacement field (22). Using the Cauchy-
Hadamard formula for the radius of convergence of the power
series

ρ−1
C = lim sup

n→∞
|uα,n| 1

n , (26)

we find the radii of convergenceρC of theux (ρ, θ ) anduy (ρ, θ )
power series to be identical:

ρC = b

p

(
3 − 2ν

2(1 − ν)

)
. (27)

In conclusion, the linear-elasticity representation of the elastic
fields (23) diverges for distances smaller than ρC . For smaller
radii ρ < ρC the nonlinearity of the glide-plane boundary
value problem becomes dominant, and the analytical solution
cannot be represented in terms of the linear elasticity far-field
solution anymore. For all intents and purposes, the radius of
convergence ρC can be interpreted as the dislocation core
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FIG. 3. Atomistic strain fields ux,x for the tungsten 1
2 [111](101)

edge dislocation core. Two repeating configurations are found along
the [121] line direction: a symmetric (a) and an asymmetric (b). Blue
color corresponds to the compressive strain and red color to the tensile
strain. The first few atomic rows above and below the glide-plane
(black, dashed line) are indexed as shown in the figure.

radius. It is of further interest to note that the radius of
convergence is independent of the angle θ , the dislocation core
is hence indeed bound by a cylinder with radius ρC surrounding
the dislocation line, as commonly pictured.

V. ATOMISTIC SETUP

We now benchmark the model with the reference data
derived from atomistic simulations. Atomistic simulations
were performed using LAMMPS [16] for iron and tungsten,
for two different interatomic potentials for each material. The
simulation cell was initialized as a pristine bcc lattice with
the coordinate system aligned along x = [111], z = [121], and
y = [101]. The crystal lattice fills a volume of 120 × 120 × 6
lattice units with periodic boundary conditions applied in the
line direction z = [121]. A dislocation was introduced by
applying anisotropic linear-elastic displacement field of the
1
2 [111](101) edge dislocation at the box center, using elastic
constants appropriate for the chosen interatomic potential.
Atomic coordinates were relaxed while keeping atoms beyond
a distance of 100 lattice units from the dislocation line
fixed at positions corresponding to a solution in an infinite
elastic medium. Atomistic strain and displacement fields were
computed in reference to the perfect bcc structure.

Two alternating atomic configurations are found along the
[121] line direction, see Fig. 3. The ux,x strain field in one
of the configurations is strongly asymmetric at the core, as
the apparent height of the glide plane is not centered between
the atomic rows. Our comparison of atomistic and continuum
strain fields is therefore solely focused on the symmetric
configuration.

The surface structure constant p for each case is found by
fitting the ux,x component of the continuum strain field to the
atomistic strain fields at the position of two atomic rows above
and below the glide plane. We refer to Table I for a comparison
of the fitted constants to their MSFK value as determined by the
crystal structure (21). The fitted values for p are found to vary
little between the various potentials. The value of the constant
does not depend on the details of the interatomic potentials,
though that is only true within the approximations inherent to
MSFK. It is therefore not surprising that atomistic simulations

TABLE I. Surface-structure constant p as fitted for tungsten and
iron and as computed from MSFK (21). The dislocation width w(p)
is computed in the glide plane according to the MSFK model.

Material Model p w(p)/b

W Marinica et al. [17] 1.37 2.48
Mason et al. [18] 1.70 2.00

Fe Ackland et al. [19] 1.41 2.41
Gordon et al. [20] 1.66 2.04

MSFKa 1.89 1.79

aFor ν = 0.28 and Gs = 3/2 (see Fig. 2),

show small variation of the surface structure constant even for
the same dislocation geometry.

A comparison of the continuum and atomistic strain fields
for tungsten computed using the Marinica et al. [17] EAM4
potential is shown in Fig. 4. The MSFK and atomistic strain
fields for tungsten are in good agreement everywhere in space.
The strain fields for iron, see the Supplemental Material
[21], deviate slightly at larger distances from the core. Iron
exhibits considerable elastic anisotropy and therefore requires
an anisotropic linear elasticity model.

The magnitude of the atomistic tensile strain is generally
higher than the atomistic compressive strain. Several phenom-
ena can affect the symmetry of the strain fields. For instance,
the glide plane may not be evenly centered between the atomic
rows, which is the case for configuration (b) in Fig. 3. Another
explanation is that in many empirical potentials it takes more
energy to compress atomic bonds than to stretch them, hence
tensile strains will be larger than compressive strains under
equal stress.

We have also repeated the same procedure for the
[100](010) edge dislocation that has a comparatively narrow
core width. This is reflected in the MSFK surface structure
constant p acquiring the value of 8.0. The MSFK model is
unable to match the atomistic strain fields, as these are more
localized than what is permitted by the Volterra solution in the
limit p → ∞. The atomistic strain fields for the [100](010)
configuration vary strongly on the scale of interatomic lattice
spacing, hence it can be reasoned that the continuum approxi-
mation inherent to the MSFK model becomes invalid.

VI. PEIERLS MIGRATION BARRIER

There is no energy barrier associated with dislocation glide
in the continuum model, as the displacement fields are trans-
lationally invariant in the direction of the Burgers vector. In
an atomic lattice however, the displacement fields are resolved
discretely on lattice sites, consequently the total elastic energy
per dislocation length L varies periodically as a function of the
displacement field center (x0, y0). The exact analytical solution
of the displacement fields in the 2D-MSFK model enables us
to estimate the barrier with little computational effort.

The dislocation glide is considered to proceed along the
minimum energy pathway, defined as the trajectory connect-
ing the global energy minima corresponding to the adjacent
periodic cells with the smallest possible energy barrier. This
energy barrier is commonly referred to as the Peierls migration
barrier [3]. We compute the barrier by evaluating the discrete
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1→

2→

3→

4→

(a) ux,x
(b) ux,y (c) uy,x (d) uy,y

FIG. 4. Strain fields in the vicinity of 1
2 [111](101) edge dislocation core in tungsten. The strain fields at the first four atomic rows above

(compressive strain, filled dots) and below (tensile strain, unfilled dots) the glide plane are pictured here, according to the indices in Fig. 3. The
x axis is given in units of the Burgers vector length b, and the y axis refers to the dimensionless strains ui,j . Figures (a), (b), (c), and (d) refer to
strains ux,x , ux,y , uy,x , and uy,y , respectively. Graphs for the same strain use identical axes scales, and the tensile strains pictured here are point
reflected.

expressions for the dislocation energy using the continuum
solution [22] for the displacement fields ux and uy as shown
in Eq. (22).

The migration pathway is approximated to lie along the
fixed height y0 = ymin where the energy minimum (xmin, ymin)
of the bulk energyLbulk(x0, y0) occurs [23]. The Peierls barrier
is then given by:

Lnet(x0, y0) = Lbulk(x0, y0) + L∂�(x0, y0) (28a)

VP = (maxx0∈[0,b)Lnet(x0, ymin)

− minx0∈[0,b)Lnet(x0, ymin))/L. (28b)

We express the shear modulus μ in terms of the MSFK force
constants by comparing the MSFK equation of motion with the
elastostatic equation (before canceling constants):

μ = mω2l2ηG. (29)

Let xn, j , yn, j , and zn, j be the coordinates of the pristine,
unstrained lattice. The interfacial energy (4b) is expressed as:

L∂�(x0, y0) = − μb2

π2l2ηG

∑
j ∈ �+

j + h ∈ �−

×
∞∑

n=−∞
sin2

(
π

b
((ux )n, j − (ux )n, j+h )

)
,

(30)

where (ui )n, j = ui (xn, j − x0, yn, j − y0) represents the dis-
placement field in i direction according to the continuum
solution (22), offset by the dislocation center (x0, y0). The
bulk energy is expressed in terms of the standard isotropic

elastic energy evaluated at the discrete lattice coordinates:

Lbulk(x0, y0) = − 1

2η

∑
j∈R3

∞∑
n=−∞

∑
ipkl

cipkl (εip )n, j (εkl )n, j ,

(31)
where cipkl is the isotropic stiffness tensor,η is the atom number
density, and (εip )n, j is the strain tensor:

(εip )n, j = 1
2 ((ui,p )n, j + (up,i )n, j ). (32)

The total energy (28b) is evaluated numerically for edge dis-
locations in tungsten, using the structure constants appropriate
to the 1

2 [111](101) and [100](010) orientations, as shown
in Table II. The Peierls barrier in the atomistic reference
is obtained by migrating one dislocation in a dipole pair
using the nudged elastic band method [24], subsequently
correcting the energy for elastic interactions. The 1

2 [111](101)
and [100](010) dislocations have a migration period of b/3 and
b, respectively.

The MSFK and MD barriers for the [100](010) dislocation
are found to be similar. The 1

2 [111](101) barrier is considerably
lower in MD, however in the MSFK model it vanishes almost
entirely due to a combination of a wide dislocation core and
staggered atomic stacking in the [121] line direction. We con-

TABLE II. Peierls barrier VP for the tungsten 1
2 [111](101) and

[100](010) edge dislocations computed using appropriate parameters
for tungsten (μ = 160 GPa, ν = 0.28).

Type p V MSFK
P /meVÅ−1 V MD

P /meVÅ−1

1
2 [111](101) 1.89 <10−4 0.918
[100](010) 8.00 143 274
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sidered the continuum displacement fields as identical for every
atomic layer in the [121] direction, effectively neglecting core
interactions between atomic layers. More sophisticated models
based on the Peierls-Nabarro solution can attain migration
barriers quantitatively comparable to those found in atomistic
simulations [25–27].

VII. CONCLUSION

In this treatise, we have systematically derived and validated
a continuum nonsingular model that predicts strain fields of an
edge dislocation, including its core. Predictions derived from
the model are consistent with atomistic simulations performed
using several interatomic potentials, for the 1

2 [111](101) edge
dislocation in iron and tungsten. Analytical solutions found for
the edge dislocation strain fields are explicit and exact.

The model provides a physically motivated connection
between equations of linear elasticity and the Peierls-Nabarro
boundary value problem. Although the model is in principle
parameter free, the surface structure constant p offers a
convenient way of controlling the dislocation core width.
For wider dislocation cores the constant p can be fitted to
reproduce atomistic strain fields, while for narrow dislocation
cores some alternative measures, such as line-tension, need to
be considered due to the limitations inherent to the continuum
approximation.

Further work can be well motivated by applying the model to
more complex systems, such as screw and mixed dislocations,
interacting dislocation segments, and most importantly line
tension calculations for curved dislocation. The treatment of
mixed or curved dislocations motivates an extension of the
MSFK model to three dimensions. The availability of reference
data from atomistic simulations offers a promising testing
ground for these applications.

ACKNOWLEDGMENTS

This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the
Euratom research and training programme 2014-2018 under
Grant Agreements No. 633053 and No. 755039. Also, it has
been partially funded by the RCUK Energy Programme (Grant
No. EP/P012450/1). The views and opinions expressed herein
do not necessarily reflect those of the European Commission.
Useful conversations with Jacob B.J. Chapman and Andrew
J. London are gratefully acknowledged.

APPENDIX: THE TWO-DIMENSIONAL MULTISTRING
FRENKEL-KONTOROVA MODEL

In the one-dimensional MSFK model we consider atoms
to interact harmonically with their nearest neighbors in the
direction of the Burgers vector. The first step is to also
consider atoms to interact harmonically with their nearest
neighbors in the perpendicular direction, with neighboring
strings interacting through a sinusoidal potential. If we let
b ‖ êx and b ⊥ êy , assuming plane-strain conditions in the z

direction, we obtain an additional equation of motion for the

transversal field uy :

uy,yy + ω2l2G

c2
uy,xx = 0. (A1)

We have chosen the stiffness and string-interaction strength
such that identical prefactors as for the ux field are obtained,
as required to attain isotropic elasticity. We do not need to
split the transversal field between the upper and lower domains
�± because edge dislocation discontinuity only applies to the
boundary conditions of ux . A comparison with the elastostatic
equations (12) makes clear that we need to further add coupling
between fields ux and uy .

For the sake of simplicity, we shall restrict following
discussion to atoms arranged in a two-dimensional square
lattice with a spacing of b. The displacement fields of an
atom originally placed at rn,m = nbêx + mbêy are written as
ux

n,m and u
y
n,m. We add a cross coupling term to the discrete

Lagrangian:

Lxy =
∑
n, m

n′ = ±1
m′ = ±1

n′m′V0 sin

(
π

b

(
ux

n+n′,m+m′ − ux
n,m

))

× sin

(
π

b

(
u

y

n+n′,m+m′ − uy
n,m

))
. (A2)

Approximating the displacement differences to first order
according to

ui
n±1,m±1 = ui

n,m ± b
∂ui

n,m

∂n
± b

∂ui
n,m

∂m
, (A3)

the Lagrangian is linearized in the continuum limit:

Lxy = η

∫
dV 4π2V0(ux,xuy,y + ux,yuy,x ). (A4)

Using the principle of least action we see that the coupling
Lagrangian contributes mixed terms to the equations of motion:

u±
x,xx + ω2l2G

c2
u±

x,yy + 4π2V0uy,xy = 0

uy,yy + ω2l2G

c2
uy,xx + 4π2V0u

±
x,xy = 0. (A5)

We are free to choose the coupling-potential strength V0 such
that the correct form for linear elasticity is obtained:

4π2V0 = 1

2(1 − ν)
= ω2l2G

c2
− 1, (A6)

where the MSFK definition of Poisson’s ratio (14) was used.
This leads to the elastostatic equations:

u±
x,xx + 1 − 2ν

2(1 − ν)
u±

x,yy = − 1

2(1 − ν)
uy,xy

(A7)

uy,yy + 1 − 2ν

2(1 − ν)
uy,xx = − 1

2(1 − ν)
u±

x,xy .

In summary, we have derived the elastostatic equations from
a two-dimensional discrete multistring Frenkel-Kontorova
model for a simple cubic crystal structure.

It remains to characterize the influence of the cross-coupling
Lagrangian on the boundary value problem. Similarly to the
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1D-MSFK case, we consider strings lying on opposing sides
of the dividing surface:

Lxy,∂� = −2
∑
n, m

n′ = ±1

n′V0 sin

(
π

b

(
ux

n+n′,m−1 − ux
n,m

))

× sin

(
π

b

(
u

y

n+n′,m−1 − uy
n,m

))
. (A8)

Exploiting the symmetries of the straight edge dislocation dis-
placement fields as known from the linear elasticity solution,

we arrive at the interfacial Lagrangian in the continuum limit:

Lxy,∂� = 4V0

b2

∫
∂�

dS cos(πu−
x,x ) sin

(
2π

b
u+

x

)
sin(πuy,x ).

(A9)

The interfacial Lagrangian vanishes because uy,x is an odd
function with respect to x. For generally curved dislocations
that is not the case; neglecting the effect of transverse fields
on the boundary value problem is equivalent to the planar core
approximation commonly used in Peierls-Nabarro models. The
derivation for a more general crystal lattice follows equiva-
lently, but the notation is opaque as we would be handling two
separate sets of string vectors, displacement vectors, and string
distances.
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