CNRS Researcher,
CiNAM,
Luminy, Marseille
thomas "." swinburne "@" cnrs "." fr
CV
/
Google Scholar
/
GitHub
We’re hiring: PhD & Postdoc (ANR DAPREDIS) PhD Application
New approaches in computational metallurgy
Keywords: data-driven coarse-graining, uncertainty quantification, atomic simulation, rare event sampling, dislocation plasticity, Markov chains
Metal alloys are uniquely strong, ductile and recyclable.
Predicting how metal components fail remains a grand challenge,
limiting performance, reducing lifetime and raising emissions.
We use ideas from condensed matter physics, dislocation theory and
machine learning to discover the atomic mechanisms of plasticity
and diffusion.
A central focus is quantfying uncertainty in data-driven
models spanning many time/length scales.
Recent Preprints / Papers (‡ = sole/corres.)
Entropy of dislocation glide (Rodney Group / PAFI)
ArXiv 2024
‡Implicit differentiation in MD (Ivan Maliyov)
ArXiv 2024 code
‡Misspecification uncertainty for low-noise models
ArXiv 2024
MACE foundation model (Csyani Group, Section A.13)
ArXiv 2023
——-
‡Free energies from mean-field bonds (Raynol Dsouza)
Phys. Rev. B 2024
‡Coarse-graining & forecasting MD with descriptors
Phys. Rev. Lett. 2023
‡Embedded ab initio with QM/ML (Petr Grigorev)
Acta Mat. 2023
A15 defects in FCC (Marinica Group / TAMMBER)
Nat. Comm. 2023
‡Ill-conditioned Markov chains (Wales Group / PyGT)
Proc. Roy. Soc. 2023
Recent & Upcoming Invited Conferences/Seminars
CoMPASs workshop, ICMS, Edinburgh, 11/25
Senior Scholar, IPAM, UCLA, 9/25-12/25
CECAM workshop, Lausanne, 03/25
AppliedML 2025, EPFL, 02/25
MRS Fall Meeting, Boston, 12/24
General Physics Seminar, École Polytechnique, 11/24
International Nuclear Engineering Consortium, MIT/Oxford, 11/24
Engineering Seminar, U Oxford, 10/24
Chemistry Seminar, U Cambridge, 10/24
UQ Meeting, Max Planck Magdeburg, 8/24
Hattrick-Simpers Group Seminar, U Toronto, 7/24
CIMTEC Conference, Tuscany, 6/24
Senior Scholar,
IMSI, U Chicago, 3/24-6/24 (video)